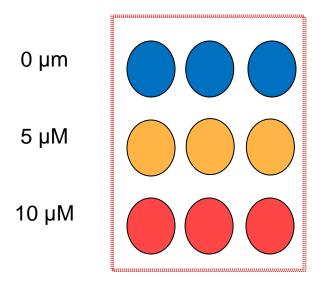
RNA-Seq Analysis in Partek[®] Flow[®]

HANDS-ON TRAINING

Partek Incorporated support@partek.com

Login and Project Set-up


- Open Google Chrome and go to the server URL
- · Log in using the username and password given to you
- · This will open to the Partek Flow homepage
- Click New Project and enter project name: RNAseq-[username]
- This will create a new project

Ноте		
+ New project		
	Create new project	×
No projects av Tutorial data: I	Name RNAseq-User0 Create project Cancel	nalysis. prain vs UHR
Check out our g	getting started guide on the documen	tation page.

Notes: _____

Experiment Description

- HT29 colon cancer cells exposed to 5-aza drug with 3 different doses
 - 0 µM (Control)
 - 5 µM
 - 10 µM
- Goal: Identify differentially expressed genes between different groups
- mRNA purified and sequenced using Illumina HiSeq (Paired end reads)
- Xu et al. 2013 BMC Bioinformatics (PMID: 23902433)

Data Upload

- Creating a new project automatically opens up the Data tab
- To upload your data, click Import data>Automatically create samples from files
- · Browse to the training RNA-Seq data
- Select all 18 fastq.gz files and click Create sample
 - Partek Flow recognizes paired-end read data if tagged with (_1 or _R1)

· 🕁	
e) 🥓	
oc EVCEDT compleinte tyt	
es EXCEPT samplemio.txt	
	ze
Siz	ze i1 B
Siz	i1 B
Siz 16' 10.	i1 B 0.48 ME
- Siz 16 10 10	i1 B 0.48 Mi 0.60 Mi
- 5 16 10 10 10 15	i1 B).48 Mi).60 Mi j.64 Mi
- 5iz 16 10 10 10 15 15	i1 B 0.48 Mi 0.60 Mi 0.64 Mi 0.80 Mi
Siz 16' 10. 10. 15. 15. 15. 21.	i1 B 0.48 Mi 0.60 Mi 0.64 Mi 0.80 Mi 0.80 Mi
Siz 16' 10. 10. 15. 15. 21. 22.	1 B 0.48 ME 0.60 ME 0.64 ME 0.80 ME 0.80 ME
Siz 16' 10. 10. 10. 15. 15. 21. 22. 25.	
Siz 16 10 10 10 15 15 21 21 22 25 25 25	61 B 0.48 ME 0.60 ME 0.64 ME 0.64 ME 0.80 ME 0.80 ME 0.01 ME 0.10 ME
Into bit 2573_1.fastq gz 2573_2.fastq gz 2574_1.fastq gz 2574_1.fastq gz 2574_1.fastq gz 2576_2.fastq gz 2576_2.fastq gz 2576_1.fastq gz 2576_2.fastq gz	si Into.b.t 16 2573_11astq.gz 10 2573_21astq.gz 10 2574_11astq.gz 15 2574_21astq.gz 15 2574_21astq.gz 12 2575_11astq.gz 21 2575_11astq.gz 21 2575_11astq.gz 22 2576_11astq.gz 22 2576_12astq.gz 25 2576_2.fastq.gz 25

Sample Attribute Assignment

- · Assign sample attributes using a tab-delimited text file
 - Contains table with ID in 1st column, followed by corresponding treatment groups
- Click Assign values from file
- In the same folder, select sampleInfo.txt, click Next
- Click Import
- · This will assign treatment groups to all samples

Analyses Data Log	J	Project settir	ngs	Notebook	Data Viewer	Attachments
Data					Sample name	
June and		1	SR	R592573		÷
Import		2	SR	R592574		÷
Sample attributes		3	SR	R592575		÷
Manage		4	SR	R592576		÷
Assign values from file		5	SR	R592577		÷
4	1.				information about	× .
Add system-wide attribute		pply attributes b		R592579	Information about	t your samples
		8	SR	R592580		-0-
		9	SR	R592581		÷
		Show data	files			Download

sample name	Treatment
SRR592573	0uM
SRR592574	0uM
SRR592575	0uM
SRR592576	5uM
SRR592577	5uM
SRR592578	5uM
SRR592579	10uM
SRR592580	10uM
SRR592581	10uM

		Attribute type
sample name	SRR592573, SRR592574, SRR	Categorical
Treatment	0uM, 10uM, 5uM	Categorical
Treatment Show/hide file preview	0uM, 10uM, 5uM	Categorio

Notes: _____

Manage attributes

- Click and drag an attribute name to change the order the attributes on data tab and downstream display
- Click on X to delete the attribute or category
- Type a category name to add a new one within an attribute

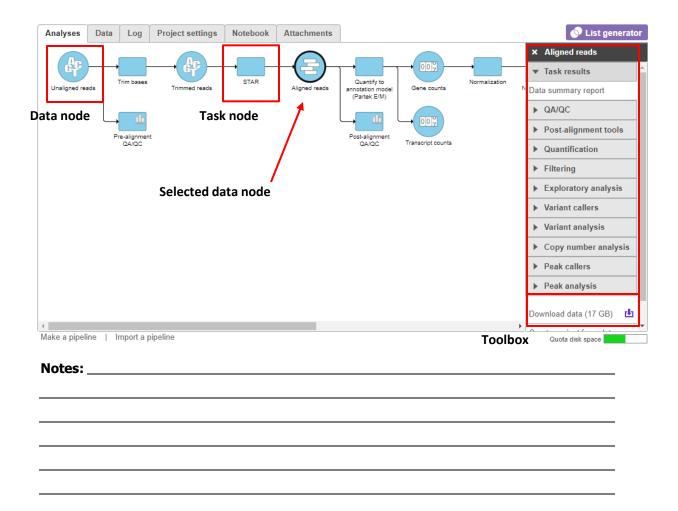
REATMENT	TIME	/ ×	POPULATION 🧪 🗙
Control	Modify this attribute		CD11b enriched
Helico	wk7		CD45+
DSS	New category		DN
lew category		\dd	EpCAM+
A	dd		New category

· Click on Add new attribute to manually add another attribute

Add new attribute			
Name Tissue			
Attribute type			
Visibility Project-specific System-wide			
Only modifiable by some users			
Add			

Note, the images here are just for your information, there is no need to edit the attributes for this tutorial

Project Tabs


- Each project consits of seven tabs, which relate to different aspect of the project
 - Analysis
 - Data
 - Log
 - Project settings
 - Notebook
 - Data Viewer
 - Atachments

		Analyses	Data	Log	Project settings	Notebook	Data Viewer	Attachments
--	--	----------	------	-----	------------------	----------	-------------	-------------

Notes: _____

Analysis Tab

- Analysis tab is the main tab of a project. It provides an overview of the analysis and is populated by two types of symbols
 - **Data nodes** (circles): They contain data / analysis results. Actions are done on data nodes.
 - **Task node** (rectangles): These are the analysis steps performed on the data
- To launch an analysis task, select (left click) a data node. The toolbox appears on the right, showing only the tasks that can be performed on that particular node (context sensitivity). Seleced nodes are higlighted by a black circle
- · Download data to export the data to local computer

Pre-alignment QA/QC

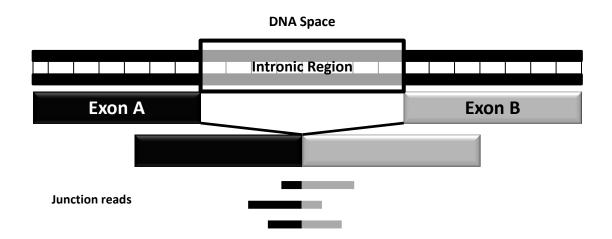
- Select the Unaligned reads data node and select Pre-alignment QA/QC
- Use the default settings and click Finish
- Double-clicking on the Pre-alignment QA/QC node opens the task report
- · Clicking each sample name also shows QA/QC results per sample

Quality score is -10log₁₀Prob

Phred Quality Score	Prob. of error	Base call accuracy
10	1/10	90%
20	1/100	99%
30	1/1000	99.9%
40	1/10000	99.99%

Pre-analysis Tools: Trim Bases

Base trimming based on quality score


- Select Unaligned reads data node
- Click **Trim bases** from the **Pre-alignment tools** section in the toolbox
- · Select Trim based on: Quality score with default settings and click Finish
- This will trim the reads at the 3' end with a Phred quality score less than 20
- This produces your 1st new data node, the Trimmed reads data node

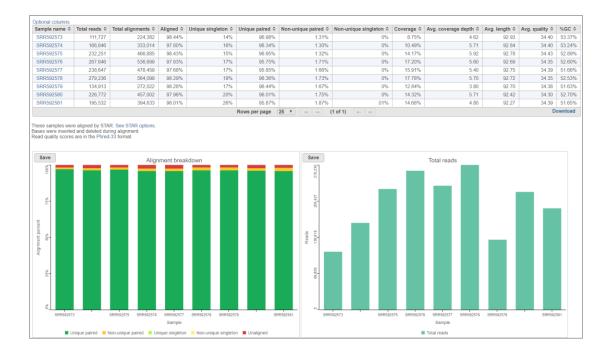
Tip: Hover over any **1** to get additional information about a specific option

<u>Home</u> > <u>RNAseq-user0</u> > Trim	bases
Trim based on	 Quality score From 3' end From 5' end From 5' end Both ends
Quality trimming	Quality
End min quality level (Phred)	
Trim from end	3-prime (right end)
Advanced options	ACGTTACCA
Min read length 🧃	
Max N 🚺	1 %
Quality encoding 🏼 👔	Auto detect •
Back Finish	

Aligning RNA-Seq Data

- · RNA-Seq data must be aligned using an aligner that supports junction reads
- A junction read is one that spans two exons
- STAR is one of several aligners in Flow that you can use
 - Others include TopHat, TopHat2, HISAT and GSNAP

Alignment


- Select the Trimmed reads data node
- Click STAR from the Aligners section of the menu
- Select STAR index:
 - Genome build: Homo sapiens (human) hg19_chr22
 - Index: Whole genome
- Use the default options, click Finish

<u>Home</u> > <u>RNAseq-User0</u> > STAR					
Select STAR 2.4.1d inc	lex				
Assembly	Homo sapiens (human) - hg19_chr22 🔻				
Aligner index	Whole genome				
Alignment options					
Generate unaligned reads					
Advanced options					
Option set	Default Configure				
Back Finish					

Notes: ______

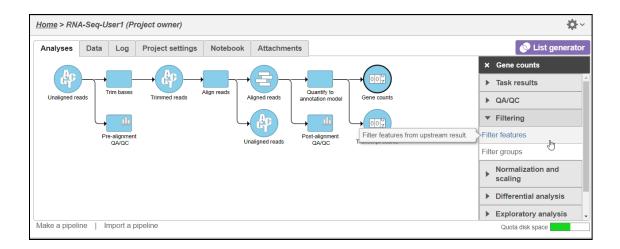
Post-alignment QA/QC

- · Perform Post-alignment QA/QC to assess the quality of the alignment task
- · Select Aligned reads data node
- Click Post-alignment QA/QC from the QA/QC section of the menu
- Use default settings and click Finish
- · Click on a sample name to get QA/QC results for that sample name

Quantification to Annotation Model

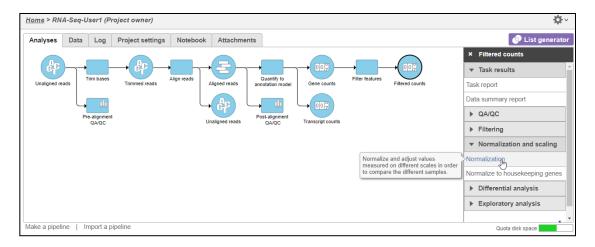
- Mapping aligned reads to a database of known transcripts
 - This method can be used with any gene or feature annotation
- · Select Aligned reads data node
- Click Quantify to annotation model (Partek E/M) from the Quantification section of the menu
- Select RefSeq as the Annotation model and click Finish
 - By default, features with total number of reads less than 10 will be filtered out

<u>Home</u> > <u>RNAseq-user0</u> > Quantify to	annotation model (Partek E/M)
Select Annotation file	
Assembly Gene/feature annotation	Homo sapiens (human) - hg19-chr22only
Quantification options	Telsed
Strict paired-end compatibility	
Require junction reads to match introns	
Minimum read overlap with feature	Percent of read length 100 + 100 +
	Number of bases 50 50
Min reads	
Advanced options	
Strand specificity	() No •
Unexplained regions	
Report unexplained regions	0
Min reads for unexplained region	30 🛫
Back Finish	


Viewing Quantification Results

- Since the RefSeq annotation has both *gene* and *transcript-level* information, this task will generate 2 data nodes:
 - Gene counts
 - Transcript counts
- · To view the results, double-click the Gene counts data node
- · Data at this level can be downloaded as text file containing count matrix

Filter Features


- Low expression genes maybe indistinguishable from noise, will decrease the sensitivity of DEG detection
- To filter out low expression at the gene level, select the **Gene counts** data node and click **Filter features** under the **Filtering** portion of the menu
- Choose Filter exclude features if Maximum<=10
- Click Finish

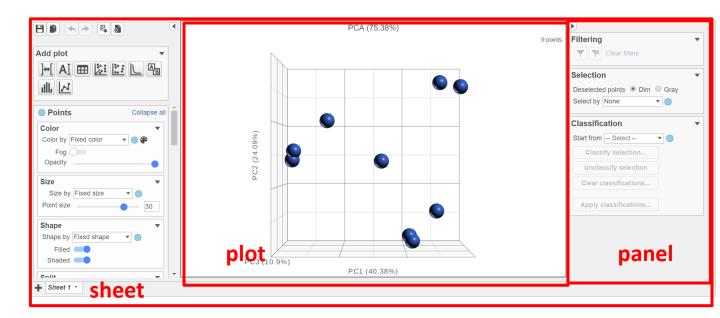
Noise reduction	filter
Exclude features where	maximum • <= • 10 •
Statistics based	filter
Filter features by	Counts Percentiles
	Keep the top 100.0 relatives with highest variance

Normalize Counts

- · Data must be normalized before differential expression analysis
- Select the filtered gene count node and click Normalize counts under the Normalization and scaling portion of the menu
- Click the Recommended button and select Finish

ormalization methods		Normalization order 🛛 📩 Re	commende
Absolute value		1. CPM (counts per million)	
Add		2. Add 0.0001	
Antilog			
CPM (counts per million)			
Divide by			
FPKM			
Log	Drag		
Logit	and drop		
Lower bound	\rightarrow		
Multiply by			
Quantile normalization			
Subtract			
TMM			
TPM			
Upper quartile			

Principal Components Analysis

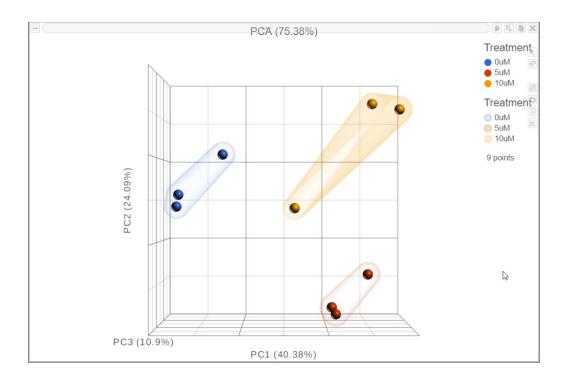

- The principal components analysis (PCA) scatter plot allows you to assess relatedness between samples and identify outliers
- This can only be performed on quantified data
- To create the PCA plot, select the Normalized counts data node, click PCA under the Exploratory analysis portion of the menu, use default settings and select Finish

<u>Home</u> > RN	A-Seq-U	ser1 (Pr	roject owner)					☆ ~
Analyses	Data	Log	Project settings	Notebook	Attachments			S List generator
								× Normalized counts
Align reads		3-	Quantify to		Filter features			Exploratory analysis
Is	Align	ied reads	annotation model	Gene counts		Filtered counts	Normalized counts	K-means clustering
	4	AC .	L ii					Graph-based clustering
	Unalig	ined reads	Post-alignment QAVQC	Transcript counts				Compare clusters
							Visualize your results using principal component analysis.	PCA
								t-SNE
								Hierarchical clustering
4								Download data (91 KB)

PCA	
Number of principal components 🕧) All
	9
Features contribute 🏼 👔	$lace$ equally \bigcirc by variance
Normalization	
Log transform data	
Log base	2.0 🗸
Log offset	1.0
Back Finish	

Data Viewer Components

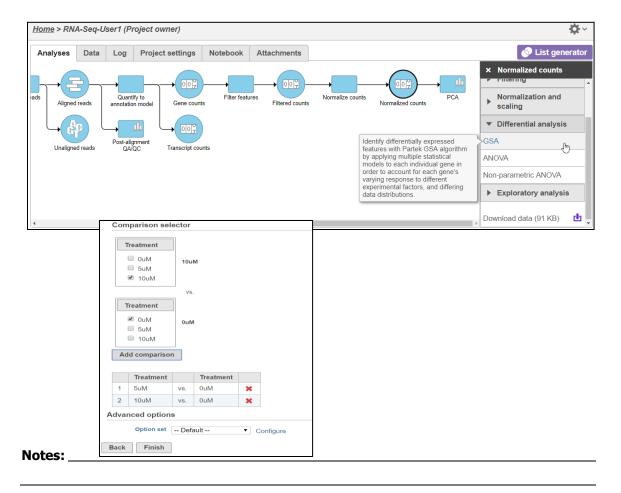
- *Data Viewer* is an interactive data visualisation tool that enables you to use combine different pieces of data from one project
- Plot: an individual visualisation within the Data Viewer
- Sheet: one or more linked plots with shared controls
- · Data Viewer session: a collection of one or more sheets



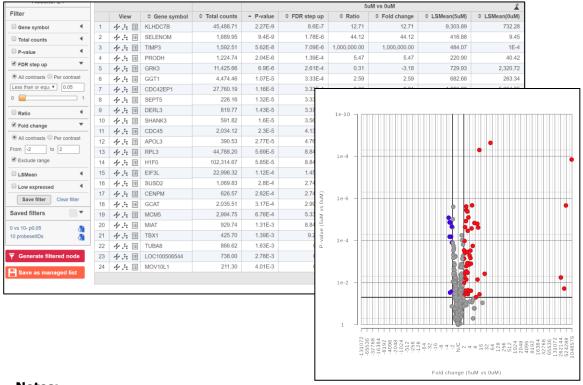
- Panel
 - Configuration (left)
 - Selection (right)

Notes:

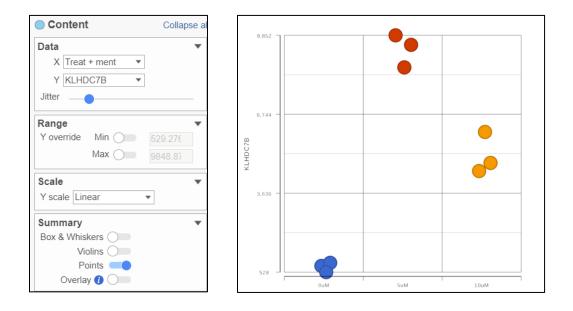
PCA scatterplot configuration


- Collapse the right panel by clicking
- · Click on PCA scatter plot to select it
- · On the configuration panel on the left to configure the plot
 - Color by Treatment
 - Change the size of the points
 - Highlight by Treatment

Click on Save button
 H
 to save this session


Differential Expression Analysis

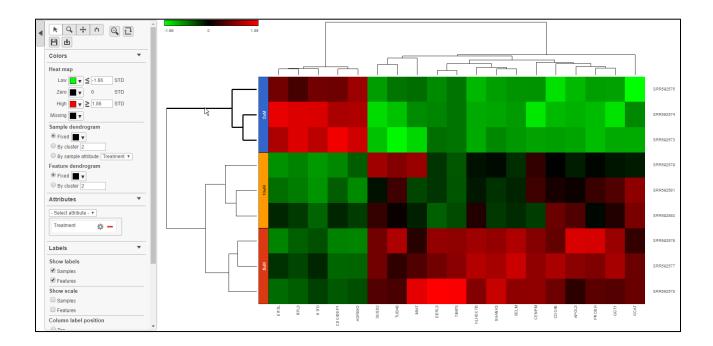
- · Select the Normalized counts data node
- Click GSA from the Differential analysis section of the menu
- · Select Treatment as an attribute to include in statistical test and click Next
- Setup the following comparisons and click the Add comparison button
 - 5uM vs 0uM
 - 10uM vs 0uM
- Click Finish


Creating a Filtered Gene List

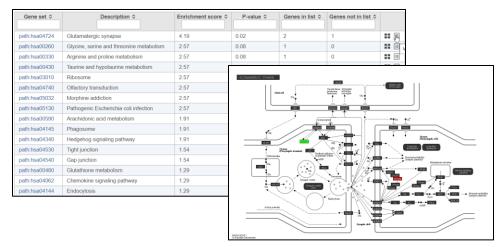
- Select GSA data node and then click Task report in the toolbox
- To get a sense of how to filter list, view the Volcano plot by clicking ^{*}
- · Under the Gene list section, on the Filter panel select:
 - FDR step up, then select All contrasts and set it to Less than or equal to 0.05
 - Fold-change, then select All contrasts and set it to From -2 to 2, with Exclude range selected
- At the bottom of the table, click Generate filtered node

Viewing Gene/Transcript Level Results

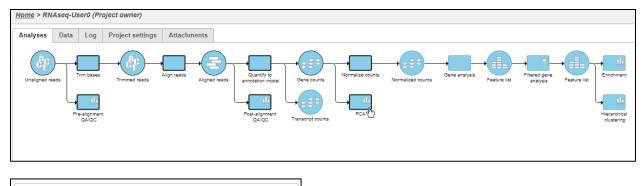
- Select Filtered feature List data node and then click Task report in the toolbox
- On the table, under the View column, select
 - 📲 to view the Dot plot
 - Jitter controls the horizontal positioning of the points
 - Box & Whiskers and Violin plots can be added
 - 4 to see the region in Chromosome View
 - I to see additional information about the statistical results


Chromosome Viewer

- Select tracks allows you to select different annotations or datasets to view together
- Sample grouping, color and transcript labeling can be edited in the Controls panel
- Search for any gene using the **Search** box
- Navigate to a genomic coordinate using the **Position** box
- · Change and pin any displayed tracks using Track order
- Select any read in the reads pileup track to display additional information about the read


Hierarchical Clustering

- Select any Feature list or counts data node to perform clustering on that list of genes/transcripts
- For this training, select the Filtered feature list produced after filtering
- Click Hierarchical clustering / heatmap from the Exploratory analysis
 section of the menu
- · Click Finish to run hierarchical clustering with default settings
- Select the Hierarchical clustering task node and click on Task Report


Enrichment Analysis

- · Perform gene set enrichment analysis using filtered list of genes
- Select Filtered feature List data node resulting from the Filtered gene analysis task
- Select Pathway enrichment from the Biological interpretation section of the menu
- Make sure the species is Homo sapiens and click Finish
- Select the Pathway enrichment task node and click on Task Report
- Select I to get additional information about each specific pathway
- · Click on pathway ID to see the gene network,
- · Genes displayed in the network:
 - Rectangle represents gene in the network
 - colored genes are in the significant gene list, color is showing up/down regulation of the comparison
 - Black color represent genes are not in the significant list
 - Click on a gene to get detailed information about the gene at KEGG website

Creating Pipelines

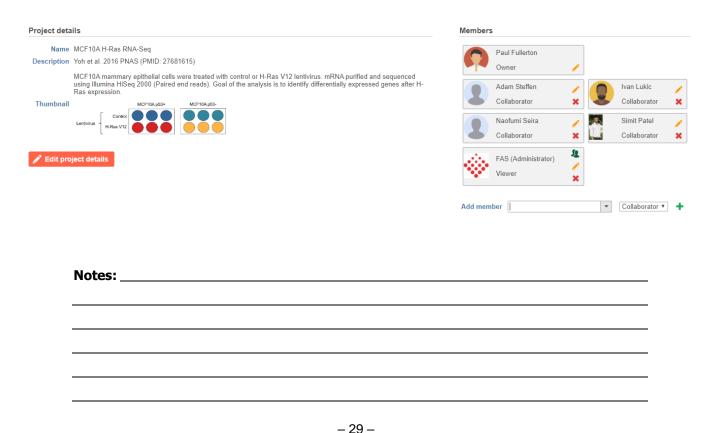
- Pipelines allows you to repeat the same set of tasks on different datasets
- On the Analyses tab, click **Make a pipeline** at the lower-left of the page
- · Name the pipeline as RNAseq-Pipeline-[username]
- Select **Section name: Pipelines** then select the task nodes (rectangles) to include in the pipeline
- Click Make pipeline to create the pipeline

Click on the task	s above to include in the pipe	line. Then clic	k Make pipeline below.
Pipeline name:	RNAseq-Pipeline-[demo]	Description:	
Section name:	Pipelines •		
Make pipeline	e Cancel		

Notes: ______

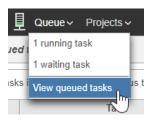
Log Tab

- Log tab lists all the tasks (current and past) within a project. Task names are links to Task details page for each task
- Task in progress can be stopped by using the stop button in the *Actions* column. Completed tasks can be deleted by selecting the **bin** icon


Task ≎	User ≎ all ▼	Start ≎ all ▼	End ▼ all ▼	Status ≎ all ▼	Action		
O TSS plot	Ivan Lukic	6 Nov 2019, 07:32 AM CST	6 Nov 2019, 07:35 AM CST	Done	Î		
O Pathway enrichment	Ivan Lukic	6 Nov 2019, 07:33 AM CST	6 Nov 2019, 07:33 AM CST	Done	Î		
O Annotate peaks	Ivan Lukic	6 Nov 2019, 07:32 AM CST	6 Nov 2019, 07:32 AM CST	Done	Î		
O Post-alignment QA/QC	Administrator	28 Nov 2018, 10:21 PM CST	28 Nov 2018, 10:50 PM CST	Done	Î		
O Detect de novo motifs	Simit Patel	15 Sep 2018, 05:06 PM CDT	15 Sep 2018, 11:10 PM CDT	Done	Î		
O Search for known motifs	Simit Patel	15 Sep 2018, 05:07 PM CDT	15 Sep 2018, 10:35 PM CDT	Done	Î		
O Chromosome view	Paul Fullerton	27 Aug 2018, 03:00 PM CDT	27 Aug 2018, 03:00 PM CDT	Done	İ		
O Filter peaks	wxw	11 Jun 2018, 09:47 AM CDT	11 Jun 2018, 09:47 AM CDT	Done	Ê		
• MACS2	wxw	11 Jun 2018, 08:24 AM CDT	11 Jun 2018, 08:48 AM CDT	Done	Ê		
O Filter alignments	wxw	15 Nov 2017, 02:51 PM CST	15 Nov 2017, 03:34 PM CST	Done	Î		
Rows per page 10 * re << (1 of 2) * r							

T - Waiting for upstream tasks to complete R - Waiting for system resources 🛕 - Cannot run with current system configuration

Time estimates are being continuously updated and will become more accurate.


Project Settings Tab

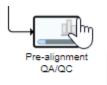
- Projects settings tab is composed of two parts and contains general information on the project
- · Project details
 - Optional metadata can be added to a project (Edit project details), such as a *Description* and a *Thumbnail* (the thumbnail appears on the home page)
 - A project can also be renamed by using the **Edit project details** and chaning the *Name* field
- Members
 - List of existing Partek Flow users which have access to the project
 - To remove a user from the project, click on the red X icon
 - To add a user to the project, click on the Add member drop down list

Other GUI Features: Tasks in Progress

To monitor Partek Flow queue go to Queue > View queued tasks

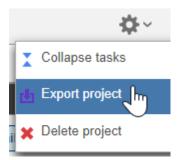
• The *Queue* shows tasks from all the projects, while the *Log* tab of a project shows only tasks launched from that project

There are 2 tasks in the queue. (Anonymous tasks are not being displayed)


Status	Task	Project	User	Submitted	End	Workers	Cancel
	STAR	↑ MCF10A H-Ras RNA-Seq	Ivan Lukic	6 Nov 2019, 01:12 PM CST	7 Nov 2019, 12:52 AM CST	iontorrent	•
Waiting R Quantify to annotation model (Partek E/M) Ampliseq 21k Brain Ivan Lukic 6 Nov 2019, 01:13 PM CST Unknown						•	
T - Waiting for upstream tasks to complete R - Waiting for system resources 🛕 - Cannot run with current system configuration							

Time estimates are being continuously updated and will become more accurate.

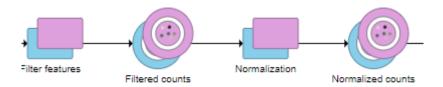
 A task in progress is shown as translucent and has a progress bar at the bottom. Once the task completes, the color changes. To move forward with analysis you do not need to wait on the task completion; you can work with data nodes of tasks in progress

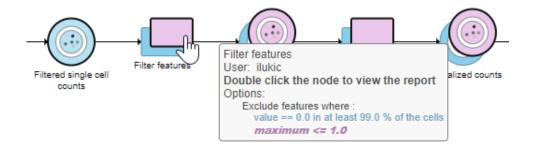

• Mousing over a task in progress provides basic info on the task

Pre-alignment QA/QC User: Ivan Lukic Status: Running Estimated end: 11/6/2019, 8:45:28 PM Progress: 21%

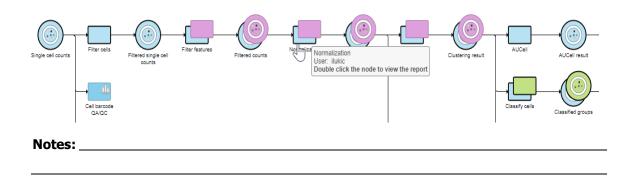
Other GUI Features: Project Operations

 An entire project (including all the data, the pipeline, and the annotation file) can be exported from Partek Flow using the **Export project** tool from the project

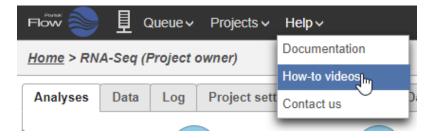

Alternatively, a project can be exported from the Home screen


- To imported an exported project, use Projects > Import project
- To delete a project, use the **Delete project** tool within the project (see above) or the delete button on the *Home* screen

Other GUI Features: Layers


• Identical tasks ran with different task options are represented using layers of different colour. The image below shows two layers (blue and pink)

• To quickly tell a difference between the layers, mouse over the first task in a new layer. The figure below shows that *Filtered single cell counts* were further filtered (*Filter features*) using two different criteria. Baloon indicates the difference in filter settings between the blue and the pink layer


· Hovering over different parts of workflow bolds the workflow

Getting Help

Self-learning

- Partek Flow documentation <u>https://documentation.partek.com/display/FLOWDOC/Partek+Flow+Docum</u> <u>entation</u>
- Step by step tutorials + practice data sets <u>https://documentation.partek.com/display/FLOWDOC/Tutorials</u>
- Recorded webinars <u>https://documentation.partek.com/display/FLOWDOC/Webinars</u>
- Partek blog page <u>https://www.partek.com/blog/</u>
- Tips and tricks on Partek Flow are regulary tweeted
 <u>https://twitter.com/Partek_Inc</u>
- How-to videos are accessable from the Settings menu

Technical Support

- · Open a support ticket at partek.com/support
- Phone: +1-314-884-6172

Notes:		