ChIP-Seq Analysis in Partek[®] Flow[®]

Partek Incorporated support@partek.com

-1-

Training Data Files

Data files in the project:

- 2 samples (sub sample data from GSE102004): -- Illumina HiSeq 2000, paired end
- Aligned to hg19-chr22 using BWA-MEM
 - ChIP-chr22.bam :
 - GSM2720367
 - ChIP antibody: H3K4me3
 - IGG-chr22.bam
 - GSM2720355
 - ChIP antibody: IgG

Annotation file in the project:

Hg19-chr22 Refseq

Notes: _____

Login and Project Set-up

- Open your preferred web browser (Chrome, Firefox, etc. would work fine)
- Go to the server URL given by your instructor
- Log in using the username and password given to you
- This will open to the Partek Flow homepage
- Click New Project and enter project name: ChIP-Seq-[username]
- · This will create a new project

<u>Home</u> > Chl	<u>Home</u> > ChIPseq_user1 (Project owner)						
Analyses	Data	Log	Project settings	Attachments			
You'll n	eed som	e sampl	es before you can ru	un an analysis.			
To get s	To get started, click the "Import data" button.						
Import data Assign sample attributes from a file							
Manage a	attributes		•				

Notes:			

Data Upload

- Creating a new project automatically opens up the Data tab
- To upload your data, click Import data>Automatically create samples from files
- Browse to /home/flow/FlowData/ChIP-seq
- Select the two .bam files and click Create sample

Home > RNAseq user0			¢۰ -
Analyses Data Log Project	Import data	×	
	Automatically create samples from files		
You'll need some samples before To get started, click the "Import d	Import samples from another project		
Import data Assign sample att	Create a new blank sample		
Manage attributes Project output directory () /home/fix	Impart count matrix		21 🧪
	Import bel files		

Analyse	s Data	Log	Project :	settings	Notebook	Attachments
				Files		
	Sample name			bam	+/-	
1	ChIP		\$÷	ChIP	4	
2	IGG		÷	IGG	4	
Hide data files Download						

Analyses Tab Overview

- · Go to the Analyses tab
- Your first data node, the Aligned reads node appears.
- Select the **Aligned reads** data node and select **Filter alignments** in Postalignment tools.
- Check Filter duplicates button
- Choose the Same start and same sequence option
- · Leave everything else as default settings and click Finish
- This will create a new task node called *Filtered reads* in the **Analyses** tab.

✓ Filter duplicates ⁽⁾		
Keep duplicates up to		
Treat the alignment as duplicate if	○ Same start position	and same sequence
Keep the alignment with	● Highest mapping score ○ Random	ly selected
Filter low mapping quality 🕖		
Min mapping quality	20	
Filter alignments with misma	nes 🕖	
Max mismatched bases	2	
Filter by genomic locations		
Include region overlapping alignments		
Exclude region overlapping alignments		
Additional filters		
Remove singletons		
Remove unaligned reads		
Back Finish		

Peak Detection

- Select Filtered reads data node
- Select MACS2 from the Peak callers section of the menu to detect peaks in ChIP sample
- Select Homo sapiens (human) hg19_chr22 as the Assembly
- · Leave other parameters as default
- Set the data type to ChIP
- Check the ChIP sample and select the Add IP sample button
- Check the IGG sample and select the Add control group button
- Select Add pairs and click Finish

	Assembly H	lomo sapiens ((human) - hg19_chr22			•		
	Format 👔 BAMPE 🔻							
Effective	genome size 👩	Human	▼ 2.7e9					
	Data type 👩		ChiP					
Define	pairs to deteo	ct enriched r	regions					
Select	samples				Build pair	rs		
	Sample nan	ne	Add IP sample			IP sample	Clear a	II
	ChIP		Add IP group		ChIP		×	
	IGG	,	0 1	,		VS.		
			Add control group			Control sample		
					IGG		×	
Add p	regions for	elected pairs						
	IP		Contro	ol		Display name		Clear all
ChIP			IGG			ChIP_vs_IGG		×
Advance	d options							
	Option set	Default	▼ Configure					
Back	Finish							

Viewing Peak Results

- · Double-click the Peaks data node to view the report
 - Each ChIP-Control pair will have one table report
 - Each row in a table is a region detected as a peak that passed the default criteria
 - Each table is sorted by -log10 pvalue
 - Click on the 🐓 button to view the peak in chromosome view

Option	nal colum	ins					
	View	Search	♦ Chromosome Search	Search	≎ End Search	✓ -log10(pvalue) Search	✤ Fold enrichment Search
1	-S-	ChIP_vs_IGG	22	50638871	50640269	44.89988	20.31955
2	-S-	ChIP_vs_IGG	22	36783579	36783989	40.07011	18.47232
3	-5-	ChIP_vs_IGG	22	31884921	31886689	37.34150	10.97828
4	-5-	ChIP_vs_IGG	22	50699516	50700287	33.48045	15.16395
5	-5-	ChIP_vs_IGG	22	46932456	46933530	31.01766	14.21620
6	-S-	ChIP_vs_IGG	22	39151508	39152036	30.08033	12.65124
7	-S-	ChIP_vs_IGG	22	41487854	41488676	30.08033	12.65124
8	-S-	ChIP_vs_IGG	22	46972671	46973346	30.08033	12.65124
9	-5-	ChIP_vs_IGG	22	21896929	21897472	29.89290	8.98223
10	-5-	ChIP_vs_IGG	22	37914280	37915657	28.07369	10.85044

Filtering Peaks

- In the Fold enrichment column, type >4 and press enter
 - The table will be filtered to only show peaks with fold enrichment >4
- Select the red Generate filtered node button
 - This will create a new data Filtered peaks data node

Peaks 155 (of 541)

Optior	nal colum	ns						
	View	Search	♦ Chromosome Search	Search	≎ End Search	▲ Length Search	log10(pvalue) Search	✤ Fold enrichment >4
1	-S-	ChIP_vs_IGG	22	39101991	39102221	230	10.70387	7.05512
2	-5-	ChIP_vs_IGG	22	39746050	39746280	230	8.39202	4.73873
3	-S-	ChIP_vs_IGG	22	41485454	41485693	239	9.88721	4.86586
4	-S-	ChIP_vs_IGG	22	35937189	35937434	245	7.52153	4.61808
5	-S-	ChIP_vs_IGG	22	20067809	20068056	247	13.29735	7.38893
6	-S-	ChIP_vs_IGG	22	42322028	42322278	250	8.07242	5.27317
7	-S-	ChIP_vs_IGG	22	38082641	38082898	257	8.39202	4.73873
8	-S-	ChIP_vs_IGG	22	19166050	19166308	258	9.18866	6.27121
9	-S-	ChIP_vs_IGG	22	29168768	29169028	260	9.38303	5.54170
10	-S-	ChIP_vs_IGG	22	38901574	38901838	264	10.84787	6.38404
19	-5-	ChIP_vs_IGG	22	24195960	24196238	278	14.19379	8.69625
20	-5-	ChIP_vs_IGG	22	24552183	24552462	279	10.70387	7.05512
21	-5-	ChIP_vs_IGG	22	38851733	38852014	281	6.23019	4.34172
22	-5-	ChIP_vs_IGG	22	21871284	21871567	283	13.92548	7.48421
23	-5-	ChIP_vs_IGG	22	42509520	42509805	285	21.70336	11.08339
24	-5-	ChIP_vs_IGG	22	37956462	37956752	290	9.88721	4.86586
25	-5-	ChIP_vs_IGG	22	31090913	31091204	291	6.43219	4.39431
Rows per page 25					a <a ('<="" td=""><td>1 of 7) ►></td><td>►I</td><td>Download</td>	1 of 7) ►>	►I	Download

TGenerate filtered node

Peak Annotation

- Click on the **Filtered Peaks** data node and choose **Annotate peaks** in the *Peak analysis* section
- · Choose the RefSeq annotation and leave everything else as default, click Finish
- An **Annotated peaks** data node will be generated, double click on it to view the report

TSS plot

- Click on **Annotated peaks** data node to choose **TSS Plot** in the *Exploratory analysis* section
- Use the default settings, click Finish
- Click on TSS plot task report
 - Profile plot of all the selected samples are on the top
 - Heatmap of selected samples are at the bottom
 - Configure the heatmap per row based on screen resolution
 - · Change the low/high value to adjust heatmap color

Motif Detection – Search for known motifs

- Click the Annotated peaks data node to choose the Search for known motifs in the *Motif detection* section
- Chose the All CORE profiles database, use the default settings, click
 Finish
 - An alignment matrix is used to match sequences in peaks against the JASPAR motif database
- · Double-click the new task node to view the report
- · Clicking on a motif name opens the JASPAR database page for that motif

Summary Detail		
Motif name ≎	Consensus sequence ≎	p-value ▲
ZNF263 (MA0528.1)	RRRGGAGGRNDRDVDDRRRRR	2.59E-292
BPC1 (MA1404.1)	RAGAGAGAGAGAGAGAGAGAGAGAGA	6.87E-177
BPC5 (MA1403.1)	AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	2.59E-163
AT1G71450 (MA1233.1)	HNNCDHCDHHDYCDCCGHCD	4.4E-150
ZNF384 (MA1125.1)	NNNNAAAAAANN	3.52E-112
HMG-I/Y (MA0045.1)	NDWVRRRNRVMRDMRH	9.17E-95
hb (MA0049.1)	BVVHAAAAAN	3.06E-86
eor-1 (MA0543.1)	NNRGAGAVRVAGAVR	1.44E-83
BPC6 (MA1402.1)	НТСТҮТСТСТСТСТСТСТМ	1.05E-78

Summary	Detail
---------	--------

Chromosome \$	Start ≎	End ≎	Strand \$	Motif ID ≎	Instance sequence \$	Score \$	
22	39,639,288	39,639,302	-	RAMOSA1 (MA1416.1)	GAGAGAGAGAGAGA	1.00	-\$-
22	39,639,286	39,639,300	-	RAMOSA1 (MA1416.1)	GAGAGAGAGAGAGAGA	1.00	-5-
22	39,639,284	39,639,298	-	RAMOSA1 (MA1416.1)	GAGAGAGAGAGAGAGA	1.00	-5-
22	39,639,282	39,639,296	-	RAMOSA1 (MA1416.1)	GAGAGAGAGAGAGAGA	1.00	-S-
22	39,639,280	39,639,294	-	RAMOSA1 (MA1416.1)	GAGAGAGAGAGAGAGA	1.00	-S-
22	39,639,264	39,639,278	-	RAMOSA1 (MA1416.1)	GAGAGAGAGAGAGA	1.00	-S-
22	39,639,262	39,639,276	-	RAMOSA1 (MA1416.1)	GAGAGAGAGAGAGAGA	1.00	-5-
22	39,639,260	39,639,274	-	RAMOSA1 (MA1416.1)	GAGAGAGAGAGAGA	1.00	-5-
22	39,639,258	39,639,272	-	RAMOSA1 (MA1416.1)	GAGAGAGAGAGAGAGA	1.00	-5-

Notes:

– 11 –

Motif Detection – Detect de novo motifs

- Click the Annotated peaks data node to choose the Detect de novo motifs in the *Motif detection* section
- Use the default settings, click Finish
 - Gibbs sampling is performed to detect enrichment of a subsequence across the peaks
- · Double-click the new task node to view the report
- · Click on a sequence logo to enlarge the image in a new tab

Assembly	Homo sapiens (human) - hg19_chr22
Number of motifs	
Motif length	6 🖕 bp to 16 🖕 bp
Back Finish]

Summary		Detail			
	Motif na	me ≎	Consensus sequence \$	Log likelihood ratio ≎	Sequence logo
	motif1		YTYYYTBY	1,623.39	ç IœleI
	Rows per page 10 V			 < <	▶1

Further Training

Self-learning

- Help > Check for Updates
- Help > On-line tutorials
- Recorded webinars

Regional Technical Support

<u>www.partek.com/PartekSupport</u>

Notes: _____