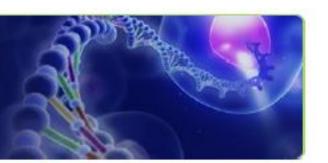
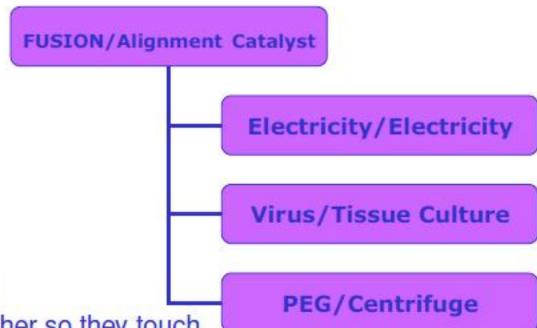


BTX-Division of Harvard Apparatus

Hybrimune™


Cell Fusion Theory

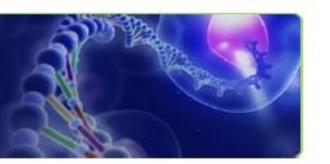
The formation of a single hybrid cell containing the nuclei and cytoplasm from different cells


- General Approach
 - Bring cells together so they touch
 - Compress the cells to increase surface area
 - Disrupt cell membrane
 - Provide a growth environment

CELL TRANSFECTION & CELL FUSION

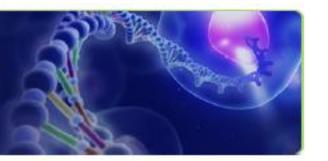
Cell Fusion Methods

- General Approach
- Bring cells together so they touch
- Disrupt cell membrane
- Provide a growth environment



PEG vs. Electrofusion

PEG-Mediated Fusion	Electrofusion
Peroxide build up contributes to cell cytotoxicity.	Not cytotoxic; Physical method
Lower fusion efficiencies	Hybrid yields are up to 10-fold over PEG-mediated fusion ⁸
>108 cells are required for PEG- mediated fusion ⁵	Fewer B cells required <107
Not reproducible: Too many variables (size & shape of the pellet; stirring method; technique varies from person to person)5,6,7	Optimized and reproducible protocols

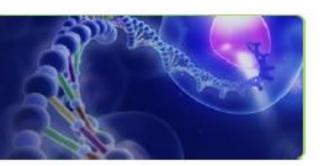


Hybrid yields generated by Electrofusion are 10-fold greater than PEG

Experiment	Antigen Specific Clones		
Number	E-Fusion	PEG	
1	20	0	
2	10	0	
3	400	23	
4	151	21	
Mean	145	11	

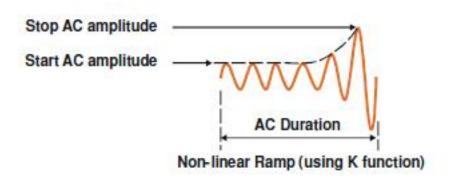
Four different transgenic mice expressing Abs to human Ag were used to compare the efficiency of E-Fusion to PEG fusion.

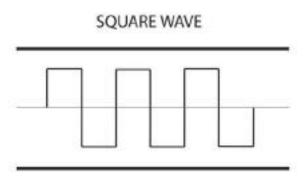
Electrofusion resulted in 9X more Ag+ reactive hybridomas relative to PEG fusion


- 8-fold more clones were obtained using electrofusion vs. PEG (542 vs 58)
- 9-fold more hybrids tested positive to the specific antigen tested. Compared to those fused with PEG.(91 vs 12)

	E-TUSION		1 .	PEG-fusion	
Experiment	Ag	#Y,K	WAg.y	#Y,K	#Ag.;
1	TT	336	96	ND	ND
2	TT	170	40	ND	ND
3	TT	208	20	0	0
4	TT	1400	10	150	0
5	TT	<1100	<400	83	23
6	TT	582	151	69	21
7	Ag #1	456	65	8	1
8	Ag #2	ND	166	ND	18
9*	Ag #3	493	101	128	56
10	Ag #4	71	0	0	0
11	Ag #5	323	0	47	0
12	Ag #5	246	0	36	0

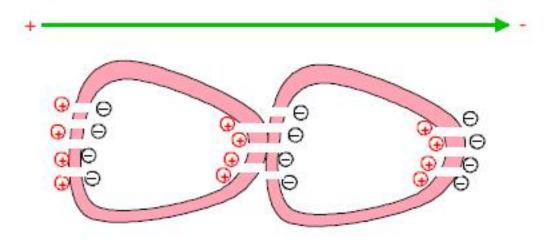
F fusion


Average	542	91	58	12
Difference (fold)	9	8		



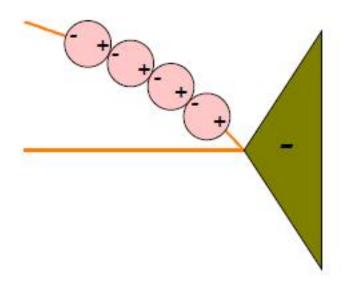
Electrofusion Mechanism

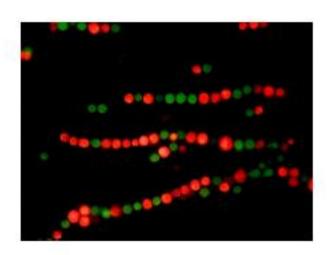
Electrofusion joins the membranes of neighboring cells by the application of a pulsed electrical field. The properties of two waveforms are used:

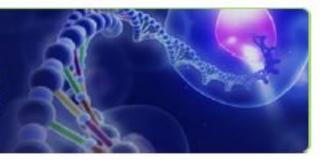

Oscillating AC Waveform

DC Square Waveform

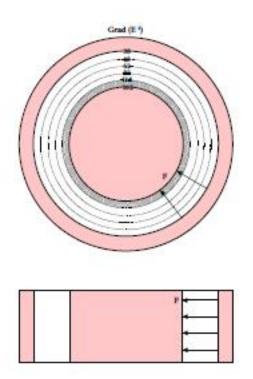
Fusion Pulse Disrupt Membrane

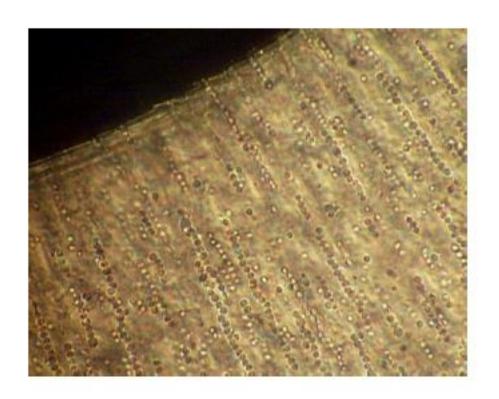

Apply a brief but intense Electric Field to form temporary pathways in cell membrane

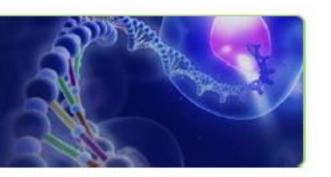



Step 1-Pre-Pulse AC Cell Alignment

As cells move toward a common point the dipoles attract







Coaxial Electrode (v²/mm³)

Adjacent Cell Probability

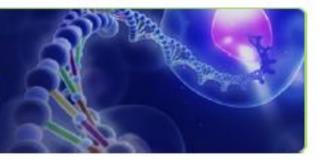
$$XY = 25\%$$

$$YX = 25\%$$

$$XX = 25\%$$

$$YY = 25\%$$

$$XY + YX = 50\%$$

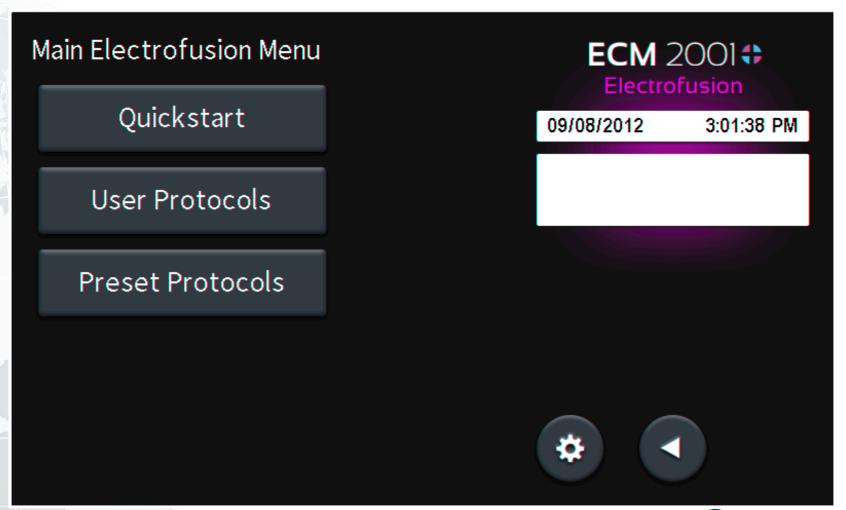


Hybrimune® Hybridoma Production System

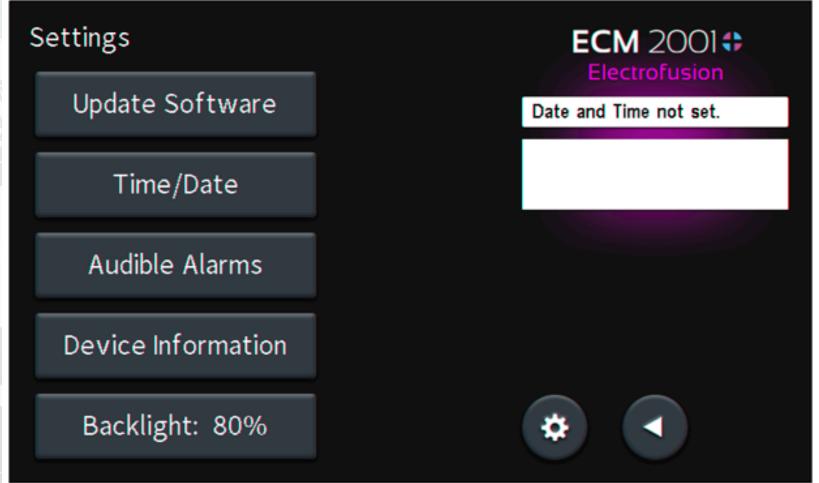
- Tri-Phasic Waveform Generator
- Computer controlled (not included)
 - Windows Interface
 - Record Keeping: Saves protocols/logs
- Large volume chambers for production
 - 2ml chamber optimization
 - 9ml chamber for production
- BTXpress Cytofusion Media
 - Specially formulated
 - GMP Compliant

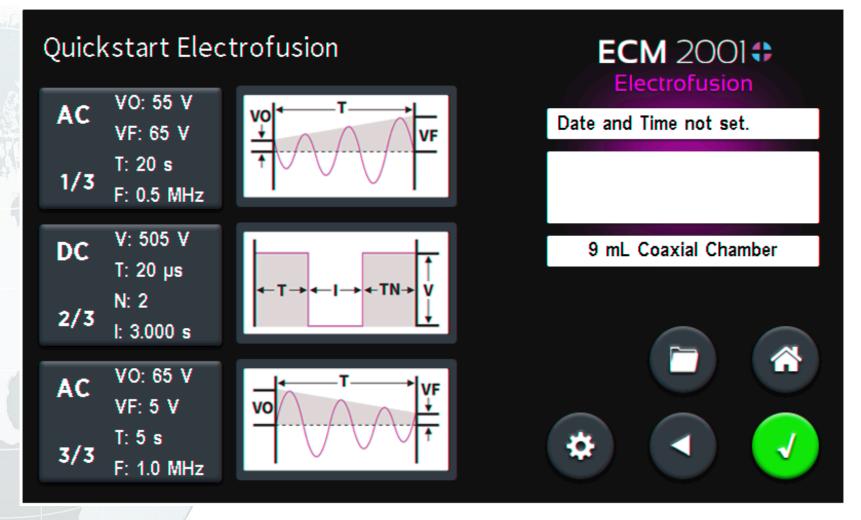
ECM 2001+ Enhanced Features

- Advanced protocol capabilities
 - Can combine up to 19 AC steps pre- and post- DC fusion step
- Enhanced AC sine waveform step programming capabilities
 - 0.2-2.0 MHz
 - 1-99 seconds
 - 5-75V, Linear ramping available
- New safety features, including pre-pulse sample resistance check, arc protection, and over current pulse abort.
- Large 7 inch touchscreen interface and integrated software within instrument
- Reduced footprint and weight
 - Length and width footprint space on bench matches current Gemini, however ECM 2001+ is taller in height.

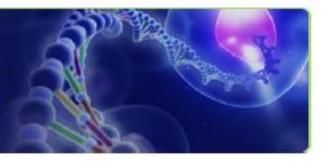

Main Menu

Electrofusion Main Menu

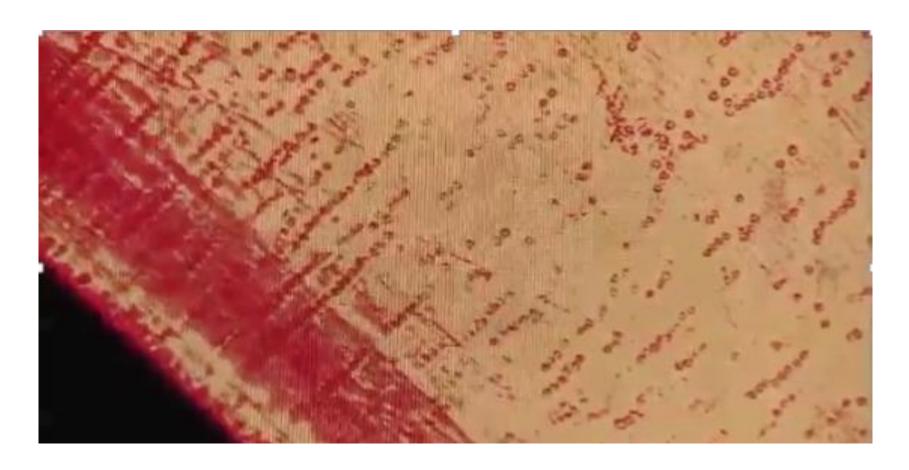




Device Settings Main Menu



BETA CELL FUSION **ECM** 2001 Electrofusion Step 1/4 (Pre-AC): 09/12/2012 4:30:53 PM VO: 5 V; VF: 50 V; T: 30 s; F: 0.5 MHz Press Omega to measure load Step 2/4 (Pre-AC): or the green "GO" button to start the protocol. VO: 50 V; VF: 50 V; T: 30 s; F: 0.5 MHz 9 mL Coaxial Chamber Step 3/4 (DC): V: 450 V; T: 10 µs; N: 3; I: 1.00 s t: 0 of 92.000 sec GO



Positioning ECM 2001+ vs. ECM 2001 and Hybrimune

	ECM 2001+	Hybrimune	ECM 2001
Target customers	Biotech/Industry/Pharma, some Academic	Biotech/Industry/Pharma	Academic/Teaching
Applications	Broad Electrofusion and Electroporation, Hybridoma Creation	Hybridoma Creation	Broad Electrofusion and Electroporation
Licensing Fee for Customer	No	Yes, 15K USD annually paid to Cellectis	No
User Interface	Touchscreen	Connect to external PC (not included) running Hybrimune software	Manual buttons/knobs, Digital voltage displays
AC waveform	Sine wave, 0.2-2 MHz, 5-75 V peak, constant or linear ramping available, duration 0-99 s	Sine wave, 0.2-2 MHz, 5-75 V peak, constant, linear ramping, or exponential ramping available, duration 0-60 s	Proprietary waveform, 1.0 mHz fixed, 0-75 V_{rms} (Equivalent to ~106 V peak), constant, pre-fusion duration 0-99 sec, post-fusion duration 0-9 s, post-fusion voltage 1/10 of prefusion amplitude.
DC square waveform	5-3000V, 10 μs-999 ms	100-1000 V, duration 20-1000 ms	10-3000V, 10 μs-999 ms
Advanced programming	Yes; 1 DC step with up to 19 different AC steps total that may occur in any combination pre- and/or post- DC	Yes; Up to 10 different groups total, each group containing 0-1 each of 3 parts ordered AC/DC/AC	No; AC/DC/AC program with option of up to 9 additional sequential repeats of same fixed program
User protocols, Log file storage	Yes, >1000 on instrument SD card	Yes, stored on customer's PC	No
Preset protocols	Yes, >20	No	No

Thank you