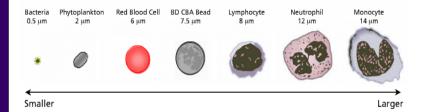
Introduction to Flow Cytometry

-- BD LSR II

Daisy Kuo 郭正佼 Assistant Product Manager BD Biosciences Daisy_kuo@bd.com

😂 BD

What is Flow Cytometry?


- Flow = Fluid
- Cyto = Cell
- Metry = Measurement
- A variety of measurements are made on cells, cell organelles, and other objects suspended in a liquid and flowing at rates of several thousands per second through a flow chamber.

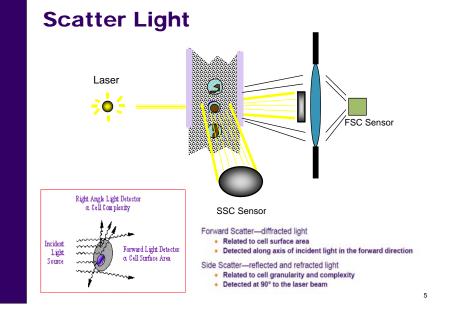
😂 BD

3

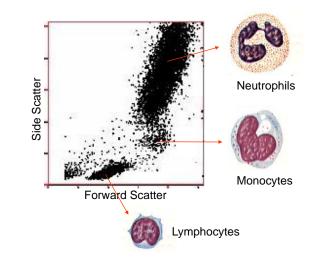
Particle Size

• Detection range: 0.5~50um

😂 BD


2

4

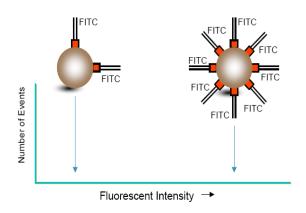

What Can a Flow Cytometer Tell Us About a Cell?

- Its relative size (Forward Scatter—FSC)
- Its relative granularity or internal complexity (Side Scatter—SSC)
- Its relative fluorescence intensity

Lysed Whole Blood

😂 BD

Fluorescence Light


- The fluorochrome absorbs energy from the laser.
- The fluorochrome releases the absorbed energy by:
 - vibration and heat dissipation.
 - emission of photons of a longer wavelength.

😁 BD

6

Fluorescence

Emitted fluorescence intensity proportional to binding sites

BD LSR II

• Up to 4 lasers, 18 colors

😂 BD

Subsystems

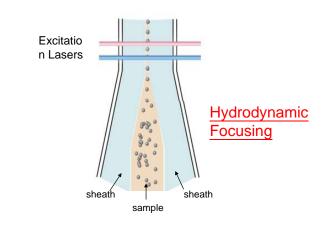
Fluidics To introduce and focus the cells for interrogation.

Optics To generate and collect the light signals.

Electronics

To convert the optical signals to proportional digital signals, process the signals, and communicate with the computer.

😂 BD


9

11

Air Filter Air Pump Sheath Regulator Sheath Sheath Filter Sheath Filter Sheath Filter Sheath Filter Sheath Cell Waste Sample Sample

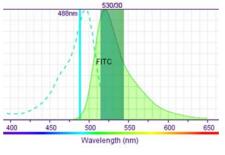
Sample Flow

12

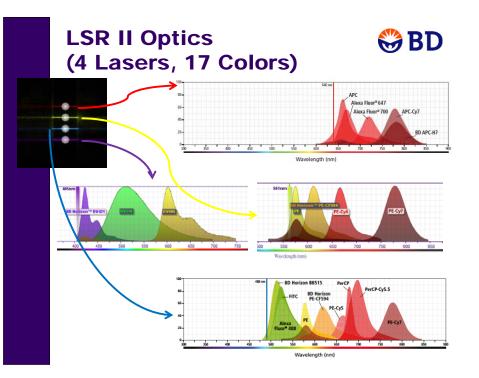
10

Sample Differential Low Differential Pressure **High Differential Pressure** Low Sample High Sample Pressure Pressure 12 µL/min 120 µL/min Lamina Lamina Flow Flow Sheath Sheath Sheath Sheath Sample Sample 13

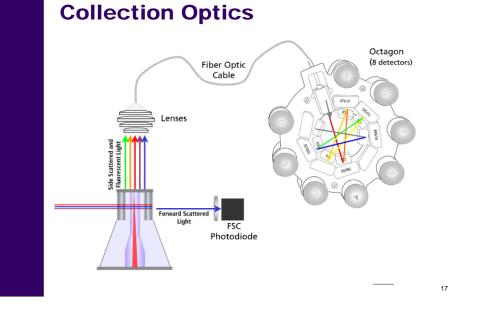
BD LSR II Optical System

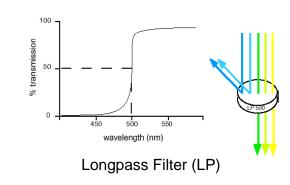

- Excitation optics:
 - Lasers
 - Filters and mirrors that route the laser light to the fluid stream
- Collection optic:
 - Fiber optic cables that direct the emitted light to the appropriate emission block
 - Filters that direct the signals in the emission block to the appropriate photomultiplier tube (PMT)

😂 BD

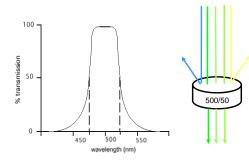

15

Excitation and Emission


- Use the maximum excitation wavelengths to determine lasers that can be used to excite the fluorochrome.
- Use the maximum emission wavelengths to determine filters and PMTs that can be used to measure the signal.


www.bdbiosciences.com/spectra

😂 BD


Optical Filters

😂 BD

19

Optical Filters

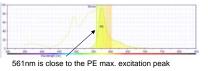
Bandpass Filter (BP)

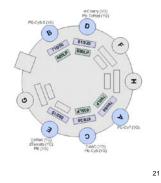
😂 BD

18

488nm Blue Laser (6 Colors)

- Basic laser which is equipped in almost all Flow Cytometers
- Generates FSC/SSC
- Example fluorochromes excited:
 - FITC, Alexa488, GFP, CFSE
 - PI
 - PerCP and PerCP tandems, 7-AAD
 - PE and PE tandems

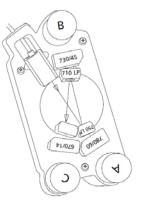

PMT	Longpass Dichroic Mirror	Bandpass Filter		Fluoro	chrome		
н	N/A	N/A					
G	NONE	488/10	SSC				
F	505LP	530/20 (520~540)	FITC	Alexa488	GFP		
E	550LP	575/26 (562~588)	Alexa532				
D	600LP	610/20 (600~630)			PI		
С	655LP	660/20 (650~670)	Alexa 547		PI	7AAD	
В	685LP	695/40 (675~715)	PerCP	PerCP-Cy5.5	PI	7AAD	
Α	755LP	780/60 (750~810)					


Image: BD

561nm Yellow-Green Laser (5 Colors)

- Closest wavelength to PE excitation peak, provides better sensitivity to PE and PE tandems
- No spillover from FITC
- Optimal excitation for DsRed, mCherry, RFP, and other fruit proteins

PMT	Longpass Dichroic Mirror	Bandpass Filter	Fluoroo	chrome	
Н	N/A	N/A			
G	N/A	N/A			
F	N/A	N/A			
Е	550LP	586/15	PE		ΡI
D	600LP	610/20	PE-Texas Red	mCherry	ΡI
С	635LP	670/30	(PE-Cy5)	(7AAD)	ΡI
В	685LP	695/40	PE-Cy5.5	(7AAD)	ΡI
Α	750LP	780/60	PE-Cy7		



640nm Red Laser (3 Colors)

- Optimal to use for populations that are highly autofluorescent when excited by the blue laser
- Example fluorochromes excited:
 - APC, Alexa647
 - APC-Cy7, APC-H7
 - Alexa700

PMT	LP mirror	BP filter	Fluorochromes
Α	750	780/60	APC-Cy7, APC-H7
В	710	730/45	Alexa Fluor® 700
С	_	670/14	APC

22

😂 BD

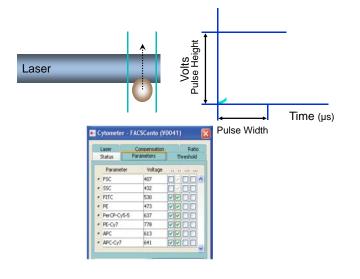
405nm Violet Laser (3 Colors)

- Ideal for Brilliant Violet (BV) dyes
 - BV421
 - BV510
 - BV605
 - BV650
- Can be used for Qdots

PM T	Longpass Dichroic Mirror	Bandpass Filter			Fluorochro	ome		
С	N/A	450/50	Pacific blue	BV421	Alexa405	DAPI	Hoechest	ViviD
в	505LP	525/50	Alexa 430	BV510	Qdot525	AmCyan		
A	556LP	585/42	Qdot585		Pacific Orange			

Image: BD Fluorochrome/Antigen Combination Antigen Density low medium

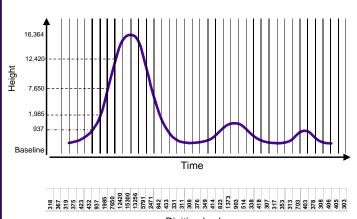
			Fluoro	chrome	
		Very Bright	Bright	Moderate	Dim
	Violet (405 nm)	BD Horizon™ BV421 BD Horizon™ BV650 BD Horizon™ BV711	BD Horizon™ BV605 BD Horizon™ BV786	BD Horizon™ BV510	BD Horizon™ V450 BD Horizon™ V500
Laser	Blue (488 nm)	BD Horizon™ BB515 BD Horizon™ PE-CF594 PE-Cy™5	PE PE-Cy™7	FITC Alexa Fluor® 488 PerCP-Cy™5.5	PerCP
	Yellow/Green (561 nm)	PE BD Horizon™ PE-CF594 PE-Cy™5 PE-Cy™7			
	Red (640 nm)		APC Alexa Fluor® 647		Alexa Fluor® 700 APC-H7 APC-Cy7


high

Electronics

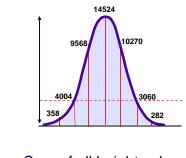
- Optical signals are converted to electronic signals.
- Voltage pulse height, area, and width are analyzed.
- Analog signals are converted to digital signals.
- Data is transferred to the computer.

😁 BD


Creation of a Voltage Pulse

😂 BD

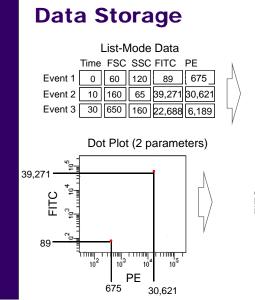
25

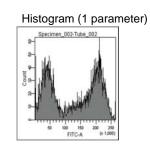

27

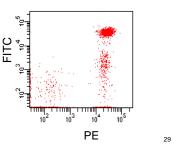
Analog-to-Digital Converter

Digitized values

Parameters


- Area: Sum of all height values
 - Height: Maximum digitized value
 - Width: Time

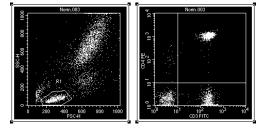

•


28

26

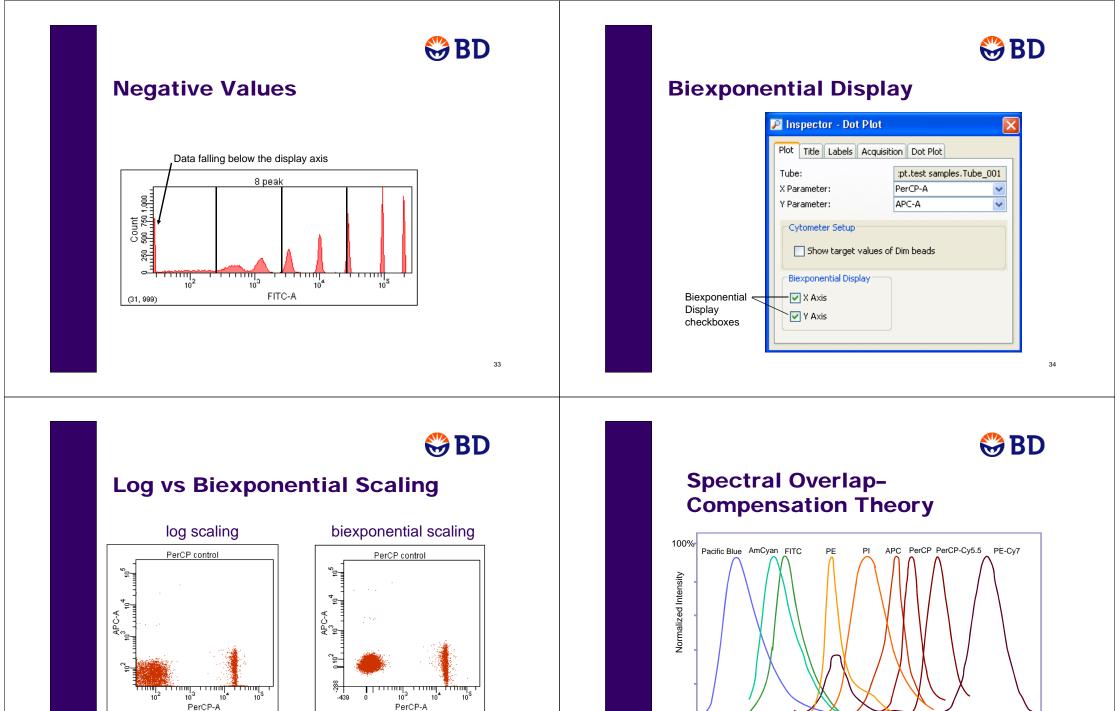
Data Display

- Linear Scaling
- Log Scaling

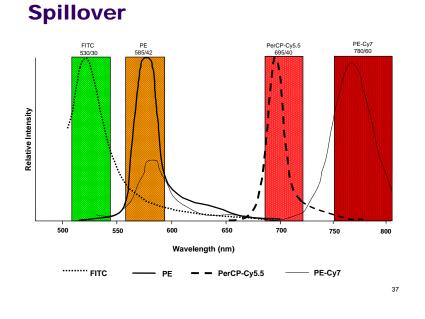

Sta	tus Parameters	Threshold La	aser Compensa	ation R	atio			_
	Parameter		Voltage	Log	А	н	W	
•	FSC		250					^
• SSC			300		Image: A start and a start			1
• FITC			500	V				1
	PE		500	~				1
			_					~
-	Ac	ld			Delete			

Linear v.s Log

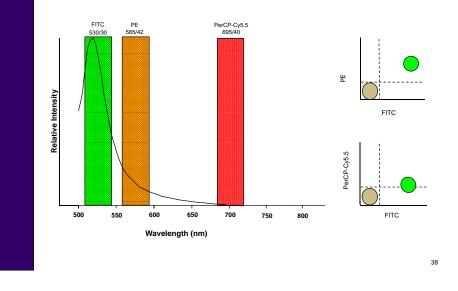
😂 BD



Linear v. Log Amplification

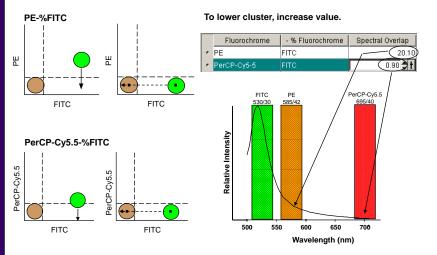

- Linear amplification is usually used for light scatter parameters and DNA analysis.
- **Log** amplification is used for fluorescence signals with a large dynamic range, or small particle detection.

30



0%

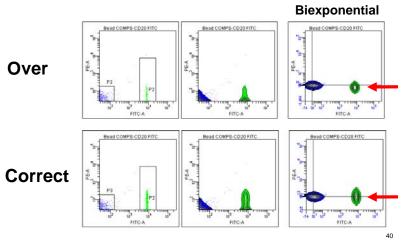
Wavelength (nm)



FITC Spillover

😂 BD

FITC Compensation



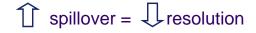
😂 BD

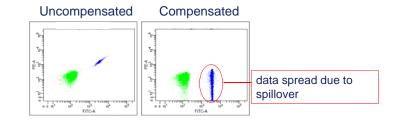
😂 BD

Compensation QC

Biexponential display reveals compensation problems.

BD CompBeads/CompBeads Plus


A convenient way to create effective



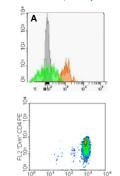
single-color compensation controls

- Use the same antibodies as in the experimental samples.
- Create bright and uniform positive fluorescence peaks.
- Avoid using limited sample.
- Mimic autofluorescence background of lymphocytes/cell lines
- Beads are coated with anti-mouse, anti-rat, and antihamster kappa.

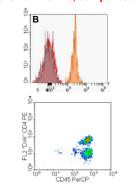
Data Spread Due to Spillover

Maecker HT, Frey T, Nomura LE, Trotter J. Selecting fluorochrome conjugates for maximum sensitivity. *Cytometry A* 2004; **62**:169-173.

😂 BD

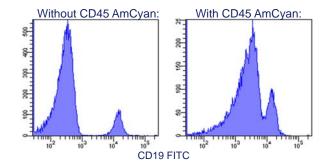

41

43


Population Lost Due to Spillover

Unstained lymphocytes Dim PE CD4+ lymphocytes

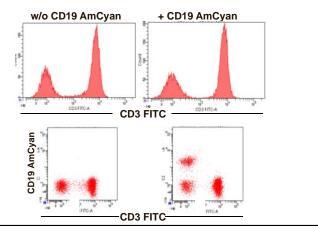
CD4- lymphocytes stained with FITC anti-CD45, compensated


CD4- lymphocytes stained with PerCP anti-CD45, compensated

Dual Excitation Reduces Resolution

Fluorochromes that are excited by more than one laser cause high spillover.

- AmCyan excited by the violet and blue lasers spills into the FITC detector.
- PE-Cy5 excited by the blue and red lasers spills into APC detector.


😂 BD

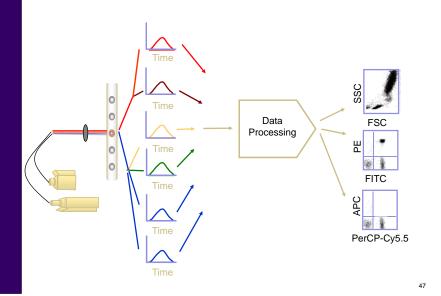
42

I BD

BUT Spillover Happened...

• ONLY if they are co-expressed on the same cell! Bound to different cells: No spill over effects!

Multicolor Panel Design Principles

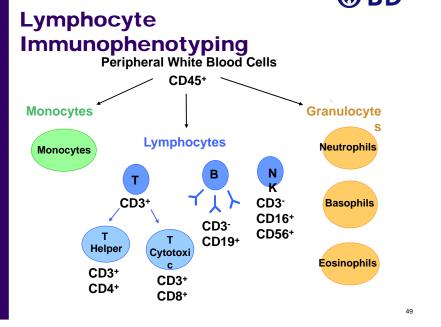

1. Consider antigen co-expression based on biology

- 2. Group antigens by high, medium and low antigen densities
- 3. Pair brightest fluorochromes on specificities with the lowest antigen densities
- 4. Minimize spillover by spread antigens across different lasers

Review

😂 BD

45



Applications

- Phenotype Analysis (Cell Surface Antigens/Markers)
- Intracellular Analysis
 -- Eg. Cytokines, Signal Transduction molecules...etc.
- DNA Analysis -- Eg. Viability, Cell cycle, Apoptosis...etc.
- Cell Function Analysis -- Eg. Free radicals, Ca²⁺, Reporter genes...etc.
- CBA (Cytometric Bead Array)

46

₿BD

۲,

₹

Dendritic Cell

1.4

CD11c PE

CD123 BV42

CD16 PE-CF594

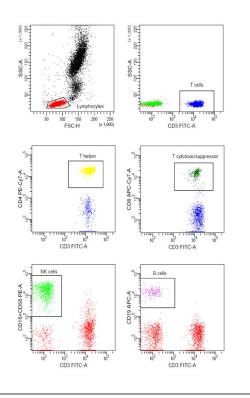
DC

HLA-DR APC-H7

8

CD8 BV711

CD33 PE-Cy7


CD19 BV786

Bicel

CD3-

CD16 PE-CF594

CD3

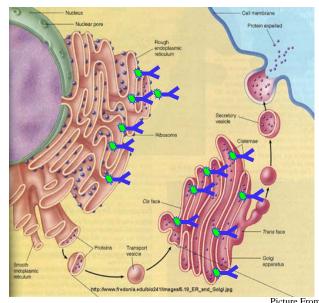
😂 BD 14-color analysis: T/B/NK/NK-T/Mono/Dendritic cell subsets FSC CD56 APC Lymphocytes СD3⁺Т CD8 1 CD8 BV711 CD4 T T cell ð 50 CD4 BUV395 CD3 PerCP-Cy5.5

CD4 T

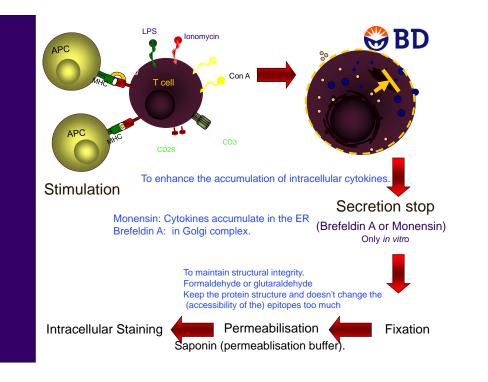
tivated T reg

HLA-DR APC-H7

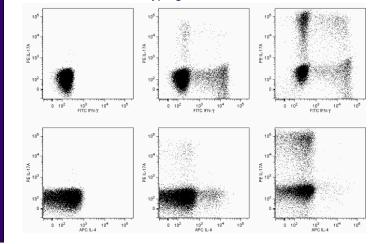
51


CD4 T

CD4 BUV395

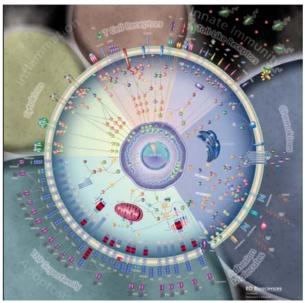


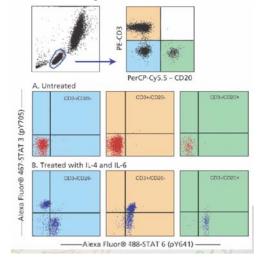
50

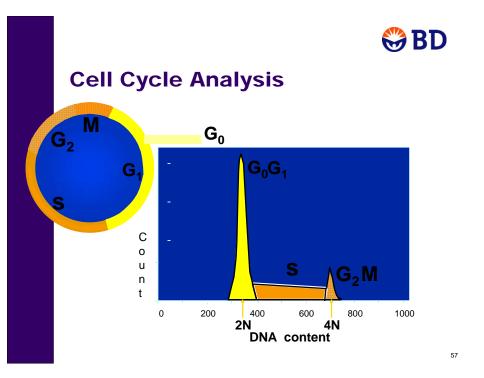


Picture From www.fredonia5edu

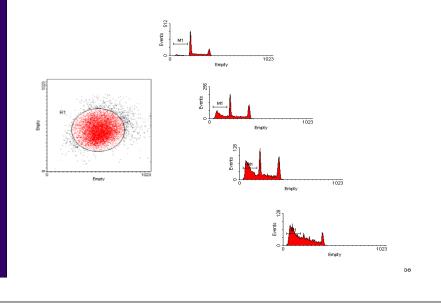
Gell Surface and Cytoplasmic Staining


Th1/Th2/Th17 Phenotyping Kit

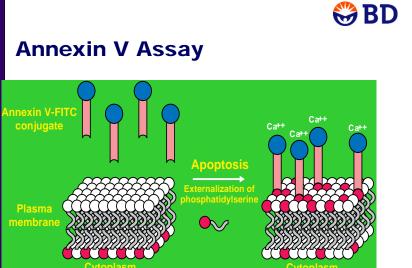

Signal Transduction

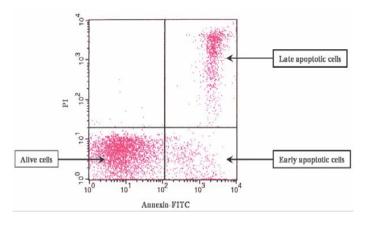

😂 BD

55



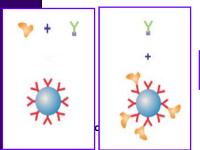
BD Intracellular Staining in Activated Lysed Whole Blood

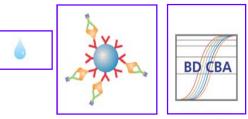

Apoptosis (Sub G1)


😂 BD

Cell Function Analysis

- Membrane Potential (DiOC6, JC-1)
- Oxidative Metabolism (Free Radicals)
- Intracellular PH Value (Snarf-1)
- Ca++ Influx (Fluo-4/Fura Red, Indo-1)
- Phagocytosis
- Cell Proliferation (PI, BrdU, Intracellular Cyclins)
- Apoptosis (Annexin V, active Caspase-3)

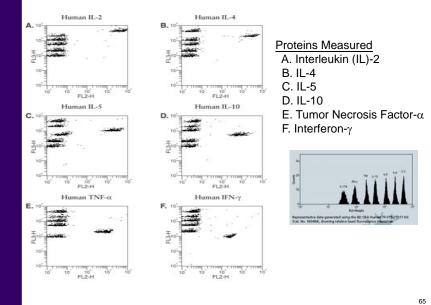



Annexin V/PI Double Staining

Bordón et al. Radiation Oncology 2009 4:58

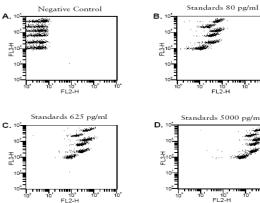
Cytometric Beads Array (CBA)

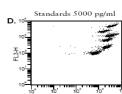
₿BD


Beads Provide a Flexible Platform

Advantages of Bead-Based Immunoassays

- Analyze multiple analytes simultaneously
- Reduced sample volume requirements
- Reduced hands-on time by parallel analysis of samples
- Wide dynamic range of fluorescence detection (requires fewer sample dilutions)

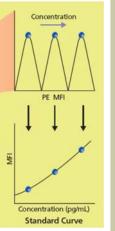

61

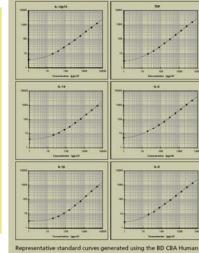

₿BD

Cytometry Beads Array (CBA)

Typical Data

66

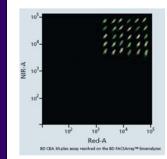

😂 BD


😂 BD

😂 BD

67

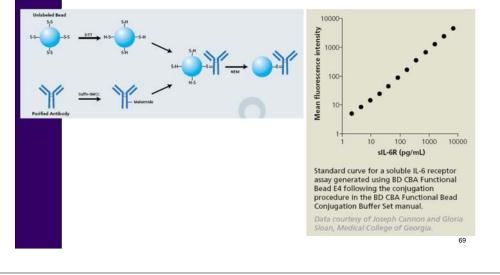
Standard Curves



Inflammatory Cytokines Kit.

CBA Flex Sets

- Open configuration (Up to 30 plex) •
- Clustering based on Red and NIR fluorescence intensity •
- Need to be used at dual-laser(488nm blue v.s 633nm red) instrument •



70

CBA Functional Beads

Can be conjugated with any Ab or Ag

