16S Metagenomics Sequencing Workflow

杜柏澔 Peter Du Field Applications Scientist

均泰生物科技公司 techsupport@gtbiotech.com.tw

© 2017 Illumina, Inc. All rights reserved.

Illumina, 24sure, BaseSpace, BeadArray, BlueFish, BlueFuse, BlueGnome, cBot, CSPro, CytoChip, DesignStudio, Epicentre, ForenSeq, Genetic Energy, GenomeStudio, GoldenGate, HiScan, HiSeq, HiSeq X, Infinium, IScan, iSelect, MiSeq, MiSeqDX, MiSeq FGX, NeoPrep, NextBio, Nextera, NextSeq, Powered by Illumina, SureMDA, TruGenome, TruSeq, TruSight, Understand Your Genome, UYG, VeraCode, verifi, VeriSeq, the pumpkin orange color, and the streaming bases design are trademarks of Illumina, Inc. and/or its affiliate(s) in the US and/or other countries. All other names, logos, and other trademarks are the property of their respective owners.

Metagenomics and Microbial Diversity

Diverse Applications

Metagenomic studies can give insight into:

- Microbial diversity in an environmental habitat
- Abundance of microbial species
- Gene content in a sample and the discovery of novel genes
- Meta-transcriptomics: analysis of the expressed genome in a sample
- Pathogen detection
- Signature profile of an environment or disease state

16S rRNA Gene Sequencing

- 16S rRNA is a part of the ribosomal RNA of prokaryotic cells which is about 1,542 nucleotides long.
- It has been observed that this molecule contains regions which are highly conserved (not altered much due to mutation) among species.
- Thus if these molecules are sequenced and the sequences of various species are compared the microbes can be phylogenetically classified.
- This is a powerful tool used for classification and genome analysis.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 bp

CONSERVED REGIONS: unspecific applications

VARIABLE REGIONS: group or species-specific applications

16S Metagenomics Library Preparation Workflow *Illumina-demonstrated protocol*

illumina

Required Reagents and Equipment

What do I need for 16S Metagenomics workflow? Items to Order from Illumina

Template Generation and Amplicons

Neighboring clusters can not be distinguished.

Catalog Number	Product Description
FC-131-2001~2004 20027213	Nextera XT Index Kit v2 Set A~D, 384 samples (96 indices) IDT for Illumina Nextera DNA UD index Set A, 96 samples (96 indices)
FC-110-3001	PhiX Control v3
(2019 Q2) or MS-102-3003	iSeq 100 i1 Reagent (500cycle Single Kit) or MiSeq Reagent Kit v3
FC-130-1005 (Optional)	TruSeq Index Plate Fixture and Collar Kit (2 Each)

What do I need for 16S Metagenomics workflow?

User-supplied equipment and consumables

Equipment for library prep

Plate centrifuge

Magnetic stand (96-samples)

Thermocycler

Reagents for library prep

Forward & Reverse oligo primers

AMPure XP Beads

KAPA HiFi HotStart Ready Mix

Equipment for input & library QC

Fluorometer (Qubit preferred)

Bioanalyzer 2100

Reagents for input & library QC

Fluorometric DNA Quant kit (Qubit preferred)

Bioanalyzer DNA 1000 Kit

KAPA HiFi HotStart Ready Mix

Ethyl alcohol

Thermal Cycler

Beckman Coulter AMPURE XP 60ML

Manufacturer: Beckman Coulter A63881

Agencourt AMPure XP 60 mL Kit: size 1,666/3,333 preps with kit components Agencourt AMPure XP Reagent The Agencourt AMPure XP system is a highly efficient, easily automated PCR purification system that delivers superior quality DNA with no salt carryover. Requiring no centrifugation or filtration, Agencourt AMPure XP can be easily used in manual and automated 96- or 384-well formats

Qubit

Bioanalyzer

16S Metagenomics Library Preparation Workflow

Illumina-demonstrated protocol

Step 1: Order Amplicon Primers

Primers target 16S rRNA gene V3-V4 region

- A single amplicon of approximately 460 bp is created
- Primers include overhang adaptor sequences
- Illumina recommends using standard desalting purification when ordering oligo primer sets

Forward Primer:

5' TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG

Overhang Adapter Sequence

Locus-Specific Sequence 16S V3-V4

Reverse Primer:

5' GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC

Overhang Adapter Sequence

Locus-Specific Sequence 16S V3-V4

DNA Isolation Kits

Epicentre DNA isolation kits are optimized to isolate bacterial DNA obtained from various environments

Sample Type	Epicentre Isolation Kit
Water	Metagenomic DNA Isolation Kit for Water
Soil	SoilMaster DNA Extraction Kit
Fecal matter	ExtractMaster Fecal DNA Extraction Kit
Difficult-to-culture species present in environmental water, soil, or compost	Meta-G-Nome DNA Isolation Kit

DNA Quantitative Analysis

Step 2: PCR Amplify V3-V4 regions of 16S rRNA gene

* Number of PCR cycles may have to be optimized for different samples

FOR RESEARCH USE ONLY

Step 2: PCR Amplify V3-V4 regions of 16S rRNA gene

Step 3: 2nd PCR to Add Indices and Adaptors

Step 3: 2nd PCR to Add Indices and Adaptors

Example Bioanalyzer Trace of Final Library

Set Up an iSeq 100 Run

iSeq 100 Workflow

Thaw cartridge IN the foil bag according to recommended methods

Prepare sequenceready libraries from input DNA or RNA

Insert diluted libraries into

the prepared sequencing consumables

Run Initiate a run using instrument control

software

illumina

Load Consumables Into the Cartridge

Load library

- Use a pipette tip to pierce the foil of the Library reservoir
- Add 20 µl to the bottom of the reservoir

Load flow cell

 Tip! Allow the flow cell to sit at room temp for 10-15 minutes to prevent forming condensation

illumina

For Research Use Only. Not for use in diagnostic procedures.

Set Up a Run Sequencing Run

• Select Sequence

Load Consumables

For Research Use Only. Not for use in diagnostic procedures.

Run Monitoring

• Paired-end 2X151 plus dual index 8+8 run time is approximately 18.5 hours

For Research Use Only. Not for use in diagnostic procedures.

Questions?

ATGACCCTTAACCTTAATCATTAGTCAM GATGGAGTAATTCTTGCCTCTTCATAGGTAAT TGGGTGGGATACTGGGAATTGGAATTAGTAA

ACCCACCCTATGACCCTTAACCTTAATCA

