From Raw Data to Pathways: Easy Genomics Analysis with Partek Flow

Tanya Chiu techsupport@gtbiotech.com.tw Bioinformatic Specialist GenetechBiotech

Who is Partek

Mission

To empower scientists to make scientific breakthroughs in human genetics, disease relationships, drug discoveries, diagnoses, and disease treatments.

for data mining and artificial intelligence

Over

peer-reviewed citations

More than

researcher questions answered

Customers in over

countries

Copyright © 2024 Partek, an Illumina company. All rights reserved. For Research Use Only. Not for use in diagnostic procedures.

Partek Flow: Start-to-Finish Bioinformatics Solution

Copyright © 2024 Partek, an Illumina company. All rights reserved. For Research Use Only. Not for use in diagnostic procedures.

User Friendly Analysis and Visualizations

Access from Your Favorite Browser

um GX-Protein > Date Viewer > Easily Explore Complex Data

Copyright © 2024 Partek, an Illumina company. All rights reserved. For Research Use Only. Not for use in diagnostic procedures.

Alex Rutkov

Comprehensive Statistics and Tools

Publicly Available Statistical Algorithms and Tools

Alignment Bowtie Bowtie BWA GSNAP Isaac STAR TopHat HISAT TMAP	QA/QC reports Pre-alignment Post-alignment ERCC spike-in Single cell quality	Variant calling Samtools FreeBayes LoFreq Strelka CNVkit GATK
Differential analysis Limma Negative binomial DESeq2 Non-parametric ANOVA Poisson	Clustering Hierarchical K-means Graph-based	Variant annotation SnpEff VEP dbSNP Custom databases
Metagenomics	Data exploration PCA Heat map t-SNE Violin plot	Peak calling MACS2 Motif detection TSS plot
Alpha and beta diversity Quantification at taxonomic levels Differential analysis at taxonomic levels	Dot plot Histograms Box plot Chromosome view Pathway 2D & 3D Scatter Plot Bar chart Pie chart Bubble map UMAP	Quantification Partek E/M Cufflinks HTSeq

Copyright © 2024 Partek, an Illumina company. All rights reserved. For Research Use Only. Not for use in diagnostic procedures.

Compelling and Publishable Visualizations

Copyright © 2019 Partek Incorporated. All rights reserved.

Visual Analysis Process

Import and Export Data at Any Stage

Illumina comp

Copyright © 2024 Partek, an Illumina company. All rights reserved. For Research Use Only. Not for use in diagnostic procedures.

Export Data

Choose Any Data

Copyright © 2024 Partek, an Illumina company. All rights reserved. For Research Use Only. Not for use in diagnostic procedures.

Download in Industry Standard Formats

Files will be available to download from task result
xport format
Features on columns (.txt)
Features on rows (.txt)
0 10X CellRanger HDF5 (.h5)
nclude content
🖌 Annotations 🛛 🗹 Counts

FASTQ, BAM, TXT, and more

Export and Import Analysis Projects

Build, Reuse, and Share Analysis Pipelines

Build Analysis Pipelines

Save, Share, and Manage

✓ Personal	+ Import pipeline					
My profile	T import pipenne					
My preferences						
∨ System	Name	Description	Creation date	Creator	Ignore	Actions
System information System preferences Single sign-on LDAP	Agilent Gene Expression Pipeli		11 Dec 2023, 09:45 PM CST			
	IncRNA Pipeline		11 Dec 2023, 09:45 PM CST			L Share pip
	Dolomite Bio Drop-Seq v2		11 Dec 2023, 09:45 PM CST	10.00		👕 Delete pip
Help widget	Exome germline variant detect		11 Dec 2023, 09:45 PM CST			:

Click on the task	s above to include in the pipeline. Then	click Create pipeline below.
Pipeline name:	RNA-seq	Description:
Section name:	Pipelines 🗸	
Create pipelir	Cancel	

Copyright © 2024 Partek, an Illumina company. All rights reserved. For Research Use Only. Not for use in diagnostic procedures.

Summary Report

- Who
- When
- What
- How long
- How much

💄 Paul Fullerton 🛛 🛗 28	: Aug 2018, 12:24 PM CDT 🛛 🕃 7.97 GB
Show/hide details	
 Trim bases 	
Task Trim bases 🛛 💄 Pa	rtek support 🋗 7 Sep 2018, 03:31 PM CDT 🛛 🕑 00:09:06 🛛 🥃 34.35 GB
Show/hide details	
 Filter samples 	
Task Filter samples	Partek support 🛗 10 Sep 2018, 03:38 PM CDT 🕑 00:00:00 🥃 8.28 GB
Show/hide details	
 Align reads 	
 Align reads Task BWA - 0.7.15 	Partek support 🛗 10 Sep 2018, 04:43 PM CDT 🕑 01:04:31 👮 5.84 GB
 ✓ Align reads Task BWA - 0.7.15 ▲ P Option 	Partek support 🛗 10 Sep 2018, 04:43 PM CDT 🕑 01:04:31 👮 5.84 GB Value
Align reads Task BWA - 0.7.15 P Option Unaligned reads	Partek support III Sep 2018, 04:43 PM CDT O 01:04:31 S 5.84 GB Value SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index
 Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index 	Partek support 10 Sep 2018, 04:43 PM CDT (P) 01:04:31 Value SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index mm10
Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index Generate unaligned reads	Partek support 10 Sep 2018, 04:43 PM CDT () 01:04:31 SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index mm10 false
 Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index Generate unaligned reads Alignment algorithm 	Partek support III Sep 2018, 04:43 PM CDT () 01:04:31 () 5.84 GB Value SRR2163168 fastq.gz, SRR2163168 index, SRR2181401.fastq.gz, SRR2181401.index mm10 false BWA-backtrack (Default: BWA-MEM)
 Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index Generate unaligned reads Alignment algorithm Max edit distance 	Partek support III Sep 2018, 04:43 PM CDT () 01:04:31 () 5.84 GB Value SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index mm10 false BWA-backtrack (Default: BWA-MEM) 4.0%
 Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index Generate unaligned reads Alignment algorithm Max edit distance Gap openings 	Partek support III 10 Sep 2018, 04:43 PM CDT O 01:04:31 S 5.84 GB Value SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index mm10 false BWA-backtrack (Default: BWA-MEM) 4.0% 1
 Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index Generate unaligned reads Alignment algorithm Max edit distance Gap openings Gap extensions 	Partek support III 0 Sep 2018, 04:43 PM CDT O 01:04:31 S 5.84 GB Value SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index mm10 false BWA-backtrack (Default: BWA-MEM) 4.0% 1 -1
 Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index Generate unaligned reads Alignment algorithm Max edit distance Gap extensions 3' deletion buffer 	Partek support III 10 Sep 2018, 04:43 PM CDT O 01:04:31 S 5.84 GB Value SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index mm10 false BWA-backtrack (Default: BWA-MEM) 4.0% 1 1 -1 10
 Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index Generate unaligned reads Alignment algorithm Max edit distance Gap openings Gap extensions 3' deletion buffer Indel ends buffer 	Partek support III Sep 2018, 04:43 PM CDT O 01:04:31 S 5.84 GB Value SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index mm10 false BWA-backtrack (Default: BWA-MEM) 4.0% 1 1 -1 1 5
 Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index Generate unaligned reads Alignment algorithm Max edit distance Gap openings Gap extensions 3' deletion buffer Indel ends buffer Enable seeding 	Partek support III 0 Sep 2018, 04:43 PM CDT O 01:04:31 S 5.84 GB Value SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index mm10 false BWA-backtrack (Default: BWA-MEM) 4.0% 1 -1 10 5 false false
 Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index Generate unaligned reads Alignment algorithm Max edit distance Gap openings Gap extensions 3' deletion buffer Indel ends buffer Enable seeding Max edit distance 	Partek support 10 Sep 2018, 04:43 PM CDT O 01:04:31 5 5.84 GB Value SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index mm10 false BWA-backtrack (Default: BWA-MEM) 4.0% 1 -1 10 5 false 2
 Align reads Task BWA - 0.7.15 P Option Unaligned reads Reference index Generate unaligned reads Alignment algorithm Max edit distance Gap openings Gap extensions 3' deletion buffer Indel ends buffer Enable seeding Max edit distance Gap extension penalty 	Partek support 10 Sep 2018, 04:43 PM CDT (•) 01:04:31 (•) 5.84 GB Value SRR2163168.fastq.gz, SRR2163168.index, SRR2181401.fastq.gz, SRR2181401.index mm10 false BWA-backtrack (Default: BWA-MEM) 4.0% 1 -1 10 5 false 2 4

12

Compatible with All Major Genomics Formats and Assays

Available Toolkits

- RNA-Seq
- DNA-Seq
- Metagenomics
- Microarray
- ChIP-Seq
- Single Cell

Copyright © 2024 Partek, an Illumina company. All rights reserved. For Research Use Only. Not for use in diagnostic procedures.

Single Cell Analysis

Introduction of Single-cell Analysis

Tissue Specimen with a spatial relationship between cells.

Relationship between cells by similarity of gene expression.

https://www.10xgenomics.com/single-cell-technology

Supports All Major Single Cell Platforms 😁 BD **FLUIDIGM**[®] TakaRa II 日 日 **GENOMICS**[®] dolomite bio BioLegend® TXT illumina BIO RAD **Drop-Seq** Partek®

¥技股份有限公司 Genetecn Biotech Co., Ltd. 16

Support for Wide Variety of Single Cell Technologies

- ✓ Single Cell RNA-Seq
- ✓ Whole Transcriptome Single Cell RNA-Seq
- ✓ Gene & Protein Expression
- ✓ ECCITE-Seq
- ✓ Spatial Transcriptomics
- ✓ Trajectory analysis

Data Processing and Analysis, All in One Place

Demo

Experiment Description

- 5k peripheral blood mononuclear cells (PBMCs) from a healthy donor
 - Any peripheral blood cell having a round nucleus
- Downloaded from 10X Genomics' dataset repository
 - http://cf.10xgenomics.com/samples/cellexp/3.0.2/5k_pbmc_v3/5k_pbmc_v3_filtered_feature_bc_matrix.h5
- Partek Flow supports file types: bcl, fastq, bam, h5, txt etc.
- Goal: Identify different blood cell populations

Transfer files

• To move files from your local computer to the Partek server, please **Transfer files** first

Create a new project

Click New project from home page

Import your own data

Single cell Bulk Microarray Other		
scRNA-Seq Spatial transcriptomics scATAC-Seq V(D)J Flow/Mass C	ytometry	
Select the format		
Import scRNA count feature-barcode-mtx This sparse matrix output is common for 10x Genomics, Fluent Biosciences and Parse Biosciences. Each sample has 3 files (two .csv with one .mtx or two .tsv with one .mtx for each sample).	10x Genomics Cell Ranger counts h5 This compressed binary format is preferred for 10x Genomics Cell Ranger output. There is 1 filtered .h5 file per sample and multiple files can be selected	 Full count matrix This rectangular cell-by-feature count matrix is common for BD Rhapsody. There is one file for one or more samples (txt, csv, tsv, txt.gz, csv.gz, tsv.gz)
h5ad This AnnData object in the h5ad file format is for data processed by Scanpy	 fastq The fastq format is used for unaligned reads. Acceptable file types are fastq, fastq.gz, fastq.bz2, fq, fq.gz, fq.bz2 	

If you want to import your own data

- Select the format
- Select all files and click Next

Specify Annotation

- Set Sample name to 5k_pbmc
- Click the Use annotation file checkbox and set the annotation
 - Assembly: Homo sapiens (human) hg38
 - Gene annotation: Ensembl transcripts
 release 110
- Click Finish to import sample

Sample					
	Sample name	Files	Cells	Features	
•	5k_pbmc	5k_pbmc_v3_filtered_feature_bc_matrix.h5	5025	33538	
Ensem Primar Feat Feat Color Feat Color Feat Feat Feat Feat Feat Feat Feat Feat	bbl Transcripts release 110 (Taiwan Gen y feature identifier ture name (Values: MIR1302-2HG, FAM ture ID (Values: EMIR130000243485, EN lication method ature ID is not unique, the feature will an Maximum Sum	etech Biotech)			
ount	value format				
🖻 Raw	v count O Normalized count wit	th log base None 🗸			
Report	t				
All f Cell A low to	features Features with non-zero is with total read count at least otal read count threshold will result in 400	values across all samples a large number of cells which might take a long time	to impor	t	

Single Cell QA/AC

- Go to the Analyses tab
- The Single cell counts data node appears after the data imported
- Click the data node

menu

Select Single Cell QA/QC from the QA/QC section of the task

Single Cell QA/AC

- Double click the Single Cell QA/QC task node to open the task report
- Use the Select & Filter card to set the Min and Max thresholds:
 - Counts: 600 15000
 - Detected features: 500 4000
 - Mitochondrial counts 0 10

Single Cell QA/AC

- Select Include selected points button
- Select Apply observation filter...
- Select the circular Single cell counts data node to filter
- Click OK on the message in the middle of the screen and click the project name to go back to the Analyses tab
 - This runs the Filter cells task and outputs a new Single cell data node

➤ Select & Filter			
Select Deselected points Dim O Gray Selection mode O Manual Criteria Add criteria - Select -	Filter Include selected points Clear filters Apply observation filter Apply feature filter		
Criteria			
Counts 600 Invert Pin histogram % Ribosomal counts 0.7645 Pin histogram 52.396 Invert Pin histogram	X Detected features 4000 500 4000 10 Invert Pin histogram 10 X 1 10	×	均泰生物科技股份有限公司 Genetech Biotech Co., Ltd.

Applying a Noise reduction filter

- Click the Filtered cells data node
- Click Filter features in the Filtering section of the task menu

Analyses	Metadata	Log	Project settings	Notebook	Data viewer	Attachments	Venn diagram
Single cell counts	Filter counts	Filter	ed cells				 × Filtered cells > Task results > Annotation/Metadata > QA/QC > Pre-analysis tools
	QA/QC						✓ Filtering
							Filter features
							Filter cells
							Split by attribute
							Downsample cells
							●●● 均泰生物科技股份

限公司

Genetech Biotech Co., Ltd.

Applying a Noise reduction filter

- Click the Noise reduction filter checkbox
- Create the following filter using the drop-downs and text boxes
 - Exclude features where value <= 0 in at least 99% of the cells
- Click Finish to apply the filer

Normalizing counts

- Click the Filtered counts node
- Click Normalization in the Normalization and scaling section of the task menu

Normalizing counts

Click on the Recommended button

Count normalization

Click Finish to run

Cells Cells	
vailable methods	
Absolute value	A
Add	
Antilog	
Arcsinh	
CLR	
CPM (counts per million)	
Divide by	
Log	
Logit	
Lower bound	
Median ratio (DESeq2 only)	

Performing Principal Components Analysis

- Click the Normalized counts data node
- Click PCA in the Exploratory analysis section
- Click Finish to run with default settings

eatures to Jsing fewer	features will	alculation reduce computation time.		
🕽 Тор	2,000	features with the highest	vst	\sim
All featu	res			
Number of	principal co	nponents to calculate		
All PCs	💿 Тор	100 🗘 PCs		
eatures co	ontribute			
Equally Standard	dize features t	o have the same weight whe	n computing	J PCs.
By variar	nce with higher v	variance will weigh more whe	n computing) PCs.

PCA

均泰生物科技股份有限公司 Genetech Biotech Co., Ltg. https://leemeng.tw/essence-of-principal-component-analysis.html

Performing Graph-based Clustering

- Click the PCA data node
- Click Graph-based clustering in the Exploratory analysis section of the task menu
- Click Finish to run with default settings

Clustering

Clustering algorithm

Three modifications of Louvain clustering algorithm are available

Louvain 🛛 Louvain with refinement 🔷 SLM

Compute biomarkers

Queue a "Compute biomarkers" task for the resulting attribute, w

PCA Number of principal components to calculate All PCs Top 20 PCs Advanced options Option set -- Default - Configure

Graph-based Clustering Results

- Double-click the **Graph-based clusters** data node to open the Task report
- The *Maximum modularity* is a measure of the quality of the clustering result. Higher modularity (close to 1) indicates a better result
- The *Cluster statistics* shows the number of clusters, cluster size and the percentage of cells in each cluster

Cluster results				
Maximum modul Cluster statistic	l arity: 0.84 s	8268		
Total numbe	r of cluster	·s 5		
Cluster 1े≓	Size	∍ ↑↓	Size % ↑↓	
	1	1272	40.91%	
	2	618	19.88%	
	3	448	14.41%	
	4	395	12.71%	
	5	376	12.09%	

Biomarkers Results

• Double-click the Biomarkers data node

Biomarkers for Graph-based

Cluster 5 ↑↓	Cluster 4 ↑↓	Cluster 3 ↑↓	Cluster 2 ↑↓	Cluster 1 ↑↓	Top features ↑ ₹
FGFBP2	IGKC	TNFRSF4	S100A8	TRABD2A	1
GNLY	IGHM	LMNA	S100A9	LEF1	2
GZMH	IGHD	AQP3	S100A12	CCR7	3
NKG7	TCL1A	IL32	LYZ	TCF7	4
KLRD1	MS4A1	KLRB1	FCN1	TPT1	5
ADGRG1	CD79A	MAF	CD14	RPL35A	6
KLRF1	VPREB3	IL7R	VCAN	RPS15A	7
PRSS23	JCHAIN	NPDC1	MNDA	RPS27A	8
SPON2	SPIB	SYNE2	CSTA	LRRN3	9
PRF1	BANK1	NSG1	SERPINA1	CD3E	10

Perform UMAP

- Click the Graph-based clusters data node
- Click UMAP in the Exploratory analysis section
- Click Finish to run the UMAP task with default settings

UMAP & t-SNE

https://pair-code.github.io/understanding-umap/

Identifying Cell Types

- We'll be using a combination of methods to identify some cell types commonly found in PBMCs. Namely:
 - Unbiased clustering (Graph-based)
 - Visualizing expression using
 - Canonical gene markers
 - Gene lists
 - Lassoing cell populations on the plot

Cell Type	Gene Markers
T-cells	CD3D, CD3E
Cytotoxic cells	NKG7, GNLY
B cells	CD79A, CD79B (list)
Monocytes	CD68, CD14

Classify T cells

- Duplicate the UMAP plot by clicking
- Color one of the plots using Graphbased classification
 - Click Style and Select source for Color by as Graph-based clusters
 - Set Color by as Graph-based

均泰生物科技股份有限公司 Genetech Biotech Co., Ltd.

Classify T cells

- Click on the other UMAP plot
- Color the plot using a gene marker, CD3D
 - Click Style and Select source for Color by as Normalized counts
 - Enter CD3D in the box

Style Style						
Color				Shape		
Color by	cd3d		• • •	Shape by	Fixed shape	• •
Range override	All	Attributes	Gene Expre	ession Gen	e Expression,Ge	ene Expressi
	CDS	expression				
Fog	CDS	D	1		-	
Fog Opacity	CD3	D Expression	•	Labeling	-	_
Fog Opacity Size	CDS	D	•	Labeling Label by	 None 	• •
Fog Opacity Size Size by Fixed	CD3	Compression	•	Labeling Label by	None	•

Style Style				121 ×	CD3L	,
Color Color by Range overrid	CD3D	Shape Shape by Filled Shaded Border size	Fixed shape	•	0 3109 points	11.44
Size Size by Fix Point size —	ed size 🔹 🔍	Label by	None	••	0	
					•	
/		0				

Classify T cells

- Click Select & Filter
- Add criteria as Graph-based and choose 1 and 3
- Click Classify and Classify selection...
- Specify the name of selected cells as T cell and click Save

Tools Select & Filter	Classify X Start from Select V	
Configure	Classify selection	
Axes	Unclassify selection	
Style	Clear classifications	
Grouping		
AB Description	Apply classifications	
ூ Control	Classify selection X	1
	Save Cancel	J

Classify B cells

- Select the 2nd UMAP plot, choose Color by Feature list and select B cells
- Click on Classify selection to name selected cells as B cell

Classify Cytotoxic cells

- Click Select & Filter
- Set Select source for Color by as Normalized counts
- Find the NKG7 and specify the min as 8
- Add GNLY and specify the min as 8
- Click Classify selection to name it as Cytotoxic cell
- Any number of genes can be used to build the rule

均泰生物科技股份有限公司

Genetech Biotech Co., Ltd.

Classify Monocytes

- Click and drag the Normalized counts data node onto the canvas and replace the second UMAP, add a 2D scatter plot
- Set CD68 as X axis, and CD14 as Y axis

Set plot axes	×	
X axis data C	D68 🔻	
Y axis data Cl	D14 •	
Add Can	cel	

Classify Monocytes

- Use lasso tool to select cells with high expression on both genes (upper-right corner)
- Click Classify selection, name it as Monocyte and Save

Viewing Classifications

Click on the UMAP plot, choose Color by New classifications

Viewing Classifications

- Click Apply classification... button in Classification card to generate a new data node
- Name the new attribute Cell types
- Click Run

Identifying Differentially Expressed Genes

- Click the Normalized cells data node
- Click Differential analysis in the Statistics section of the task

Identifying Differentially Expressed Genes

Choose Hurdle and click Next

Method to use for differential analysis 🕖

DESeq2 Hurdle model ANOVA Recommended for bulk RNA-Seq data with small sample size e.g. < 20 Recommended for single cell RNA-Seq and CITE-Seq data. Recommended for continuous data including bulk and single cell expression samples. data. Welch's ANOVA Limma-trend Limma-voom Recommended for continuous data including bulk and single cell expression Recommended for continuous data with small sample size e.g. < 20 samples. Recommended for bulk RNA-Seg data with small sample size e.g. < 20 samples. data. Kruskal-Wallis Gene Specific Analysis Recommended for data that is not normally distributed and large sample Recommended for data with no replicates in any groups. size e.g. > 20 samples.

Identifying Differentially Expressed Genes

- Choose Cell types and click Next
- Choose to compare Cytotoxic cell vs T cells, click Add comparison
- Click Finish

Select facto	r(s) for ana	ysis		
Categorical fa	actors			
Numeric facto	ors			
Expressed	d genes	Mitochondrial reads percent	Ribosomal reads percent	Total count
Add factors	s Add in	teraction 🕧		
Selected fac	tor(s)			
Factor	Delete			

Viewing Hurdle Results

- Double click the T cell vs Cytotoxic cell data node
- Genes are listed starting with the lowest p-value

						👗 T cell vs (Cytotoxic cell						
	View			Gene ID ↑↓	Gene name †↓	P-value 17	FDR step up $\uparrow\downarrow$	Ratio †↓	Fold change $\uparrow\downarrow$	LSMean(T cell) ↑↓	LSMean(Cytotoxic cell) $\uparrow\downarrow$	Pct(T cell) ↑↓	Pct(Cytotoxic cell) ↑↓
1	÷	.4		PDGFD	PDGFD	0	0	0.38	-2.62	1.02	2.67	3.9E-3	0.20
2	÷	.4		PRELID1	PRELID1	0	0	0.13	-7.69	18.78	144.34	0.57	0.87
3	-5-	.4		PREX1	PREX1	0	0	0.20	-4.90	2.23	10.91	0.16	0.45
4	÷	.4	::	PRF1	PRF1	0	0	1.6E-3	-624.95	1.97	1,232.67	0.13	0.98
5	÷	.4		ARHGEF3	ARHGEF3	0	0	0.26	-3.79	3.18	12.04	0.23	0.48
6	÷	.4		ARHGDIB	ARHGDIB	0	0	0.71	-1.42	548.70	777.43	0.99	0.99
7	÷	.4		ARHGDIA	ARHGDIA	0	0	0.27	-3.68	18.11	66.70	0.56	0.76
8	÷	.4	1	PRKCA	PRKCA	0	0	6.14	6.14	14.83	2.42	0.53	0.17
9	÷	.4	Ħ	PRKCB	PRKCB	0	0	0.23	-4.33	9.98	43.17	0.45	0.68
10	÷	.4		PRKCH	PRKCH	0	0	0.26	-3.82	12.67	48.35	0.50	0.71
11	-\$-	.4	::	PRDX5	PRDX5	0	0	0.18	-5.56	15.57	86.61	0.54	0.80
12	÷	.4		ERH	ERH	0	0	0.39	-2.55	18.59	47.48	0.58	0.72
13	÷	.4	Ħ	PRMT2	PRMT2	0	0	0.39	-2.54	37.56	95.47	0.68	0.80
14	-\$-	.4		ARHGAP18	ARHGAP18	0	0	0.49	-2.05	1.14	2.34	0.03	0.17
15	-5-	.4		PRR5	PRR5	0	0	0.09	-10.81	2.59	28.01	0.19	0.62

均泰生物科技股份有限公司 Genetech Biotech Co., Ltd.

Viewing Hurdle Results

X arid

Show lines

- Click the icon ... next to a gene under View to open dot plot
- Set Cell types as X axis
- The plot can be added violins or box Whiskers in **Summary** session from **Style**

Viewing Hurdle Results

Click the icon x to invoke volcano plot

Identify Significantly DEG

- Use the **Filter** on the left-hand side of the table
 - FDR step up: less than or equal to 0.05
 - Fold change: exclude range -2 to 2
- Click Generate filtered node to run the filter task

Configuring Hierarchical Clustering

- Click the Filtered feature list data node
- Click Hierarchical clustering / heat map in the Exploratory analysis section of the task menu
- Check Cluster for Feature order
- Check Filter cells and set to Include Cell types in T cells OR Include Cell types in Cytotoxic cells

Genetech Biotech Co., Ltd.

Hierarchical Clustering Results

- Double-click on the Hierarchical clustering / heat map data node to view the result
- Use Annotations to annotate the cell types

Biological Interpretation

- Click the Filtered feature list data node
- Click Gene set enrichment in the Biological interpretation section of the task menu
- Select Gene set database and choose the database
- Click Finish

Biological Interpretation

 Double-click on the Gene set enrichment data node to view the report

Gene set ↑↓	Description ↑↓	Туре ↑↓	Enrichment score ↑↓	P-value 1े₽	FDR step up ↑↓	Rich factor ↑↓	Genes in set ↑↓	Genes in list ↑↓	Genes not in list ↑↓	Genes in list, not in set ↑↓	Genes not in list, not in set ↑↓	0	
GO:0070062	extracellular exosome	cellular component	121.88	1.17E-53	2.26E-49	0.28	1,310	369	941	1,057	8,376	=	
GO:0043230	extracellular organelle	cellular component	119.56	1.19E-52	5.75E-49	0.28	1,321	369	952	1,057	8,365		
GO:1903561	extracellular vesicle	cellular component	119.56	1.19E-52	5.75E-49	0.28	1,321	369	952	1,057	8,365		
GO:0065010	extracellular membrane- bounded organelle	cellular component	119.56	1.19E-52	5.75E-49	0.28	1,321	369	952	1,057	8,365		
GO:0031982	vesicle	cellular component	100.13	3.27E-44	1.26E-40	0.23	2,046	476	1,570	950	7,747		
GO:0002376	immune system process	biological process	84.06	3.1E-37	1E-33	0.26	1,199	313	886	1,113	8,431		
GO:0002682	regulation of immune system process	biological process	68.71	1.45E-30	4E-27	0.26	1,044	269	775	1,157	8,542		
GO:0030055	cell-substrate junction	cellular component	66.64	1.15E-29	2.67E-26	0.38	322	122	200	1,304	9,117		
GO:0005925	focal adhesion	cellular component	66.56	1.24E-29	2.67E-26	0.38	318	121	197	1,305	9,120	== ==	

Appendix – Batch Removal

Purpose

- When a project contains multiple libraries, the data might contain variabilities due to technical differences (e.g. sequencing machine, library prep kit etc.) in addition to biological differences (like treatment, genotype etc.)
- Batch removal is essential to remove the noise and discover biological variations.

Batch effect correction

与数生物科技股份有限公司 Genetech Biotech Co., Ltd.

Assign batch to each sample

- Go to the Metadata tab
- Click Manage
- Add new attribute and enter a name
- Add categories

Assign batch to each sample

- Back to Metadata tab
- Click Assign values and choose the batch of each sample
- Apply changes

Analyses	Metadata	Log	Pr	oject settings Noteboo	ok Data	viewer	Attachments		
\checkmark Sample a	 Sample attributes Manage Assign values 				Attributes				
Manage				Sample name					
Assign value					# Cells	batch			
Assign value	s from file		1	Mouse_Brain_Anterior	2823	1		~	
Add system-	Add system-wide attribute		2	Mouse_Brainl_Posterior	3289	2		~	
✓ Cell attril	butes								
Manage			Арр	oly changes Discard ch	anges				

Performing Batch Removal

- Click the Normalized counts data node
- Click Seurat3 integration in the Batch removal section
- Select the attribute name for integration
- Click Finish
- A new data node will be created

Select a factor for integration

 \sim

Advanced options

Option set

-- Default --

Configure

Appendix – Garnett Classifier

Train Classifier

Classify cell type Train classifier

Train Cla	assifier	
Marker file		
Choose marker from 🥡	Local files	
Marker file 🧃	Partek Flow Server O URL	
	No files selected Brows	e
	To move files from your local computer to the Partek server, p	lease <u>Transfer files</u> first.
		Glioma_cell_type_classifier.txt - 記事本
		檔案(F) 編輯(E) 格式(O) 檢視(V) 說明
		>Microglia expressed: CD14
		>Oligodendrocytes expressed: MAG
There has to be	e a space character after the color	>Glioma expressed: BCAN, GPM6A
and that there h	has to be a space character after	the comma. 与于均泰生物科技股份有限公司 Genetech Biotech Co., Ltd.

Train Classifier Results

- Double click the Classifier data node
- Ambiguity scores are calculated for each of the markers which indicates how many cells receive ambiguous labels when this marker is included

Train Classifier Results

 The classification gene table may give a hint to which genes are chosen as the relevant genes for distinguishing between different cell types

Feature \$	Glioma \$	Microglia \$	Oligodendrocytes \$	Unknown \$
(Intercept)	-39.80	9.48	14.21	16.11
BCAN	2.63	-1.00	-0.80	-0.83
GPM6A	2.43	-0.60	-0.96	-0.87
CD14	0.82	1.96	-1.48	-1.30
MAG	0.52	-0.50	2.71	-2.73

Classify Cell Type

× Filtered counts Double click data node to view report. Task results Task report Data summary report Partek development ▶ QA/QC Pre-analysis tools ► Filtering Normalization and scaling Batch removal Statistics Exploratory analysis Trajectory analysis Biological interpretation Classification Classify cell type Train classifier

Classify Cell Type – Project classifiers

Classify Cell Type – Managed classifiers

Garnett classifier × New classifier file... Species V Glioma Demo classifier humanAdrenal Name humanCerebellum humanCerebrum humanEve humanHeart Create humanIntestine humanl iver humanMuscle humanPancreas humanPlacenta humanSpleen humanStomach humanThymus mouseBrain New classifier file...

Classification Results

- "cell_type" is the cell type assignments directly from Garnett model.
- "cluster_ext_type" is the cell type that's determined by expanding cell type assignments to nearby cells using Louvain clustering.

Garnett Classifiers vs. Manual Classification

Plot Interpretation

Single cell QA/QC report - Violin Plot

由左至右分別代表細胞中的read數量、基因數量以及Mitochondria gene表達量 X軸沒有意義,目的是為了避免有兩個以上的cells有相同的count重疊看不出來;Y軸代表total count;每個點代表一個細胞 Violin plot 越寬代表密度越大,可以由這張圖明顯看到cell集中於哪個數量區域,並進一步留下較有生物意義的細胞

Selected cells • Excluded cells

Feature Plot

X軸為不同的細胞類別·Y軸為Normalized後的 Read count數;客戶可自行將細胞分類· 並透過Feature Plot了解特定基因在不同類別中的RNA表現量

Scatter Plot

CD8a_TotalSeqB

5.52

Scatter Plot可以看出不同Biomarker在不同種類的細胞是否具有相關性 以左圖說明·XY軸分別是CD8及CD4兩種biomarker 表達量· 紅色的CD8 T-cell 群有高表達CD8及低表達CD4的特性·CD4 T-cell 群則反之; 由此圖可知這兩個Biomakers能有效分出藍色及紅色這兩個種類的細胞

Volcano Plot

用於查看特定細胞群中高表達基因及低表達基因的數量

以左圖說明·X軸為Fold change·Y軸為P-value; 紅點為Up-regulated gene·綠點為Down-regulated gene 由此圖可看出cytotoxic cells 和 T-cells 這兩個種類的細胞群相比之後· 有多少up-regulated, down-regulated 及 un-change 的基因

Heatmap

RPR r 310 ŝ SB 22Z C BA57 UBA57 CPS11 PS11 :2g RPL34 RPL34 RPL34 RPL34 RPL34 RPL34 RPL31 RPL31 RPL27A RPL27A RPL SPAI RPS23 RPS PIK3IP PSMB10 EF.0 망딸 RARRE 3PR18 SH3 SLC9, 10 S

}有限公司 Genetecn Biotech Co., Ltd.

-RNA-seq-Ginger -RNA-seq-Ginger

KEGG Pathway result

Dimensionality Reduction: PCA, t-SNE, UMAP

細胞分群後的圖表呈現,因每個細胞皆有上千、萬個基因,相等於上千、萬個維度,必須透過降維才能比較各個細胞間不同基因表達量的相關性 PCA, t-SNE, UMAP分別為三種不同的降維方法,是依照各細胞的基因表達量來分群,同一群的細胞所表達的基因越相似 Partek Flow 提供2D及3D的呈現方式,讓使用者更有效了解樣品中不同細胞的相關性

View each in 2D or 3D

Run Trajectory Analysis with Monocle

透過Trajectory分析·將不同的細胞群依照基因的表達量來<mark>預測發育細胞的分化軌跡或細胞的演化過程</mark> Identify States:根據表現量的分佈建構出細胞分化過程的樹狀結構 Calculate Pseudotime: 了解每個細胞在該樹狀結構中的位置·可進一步進行差異分析探索細胞分化過程的重要基因·常用於發育相關研究

