OpenSPR

Publish faster with realtime binding kinetics & affinity data

Agenda

1. Intro to Nicoya

- 2. Basics of SPR
- 3. Applications

4. OpenSPR

Improving human life by helping scientists succeed

Agenda

1. Intro to Nicoya

2. Basics of SPR

- 3. Applications
- 4. OpenSPR

Basics of SPR Surface plasmon resonance

Basics of SPR

Why SPR?

Data Obtained with SPR:

- Kinetics Data
 - Association rate constant (k_a)
 - Dissociation rate constant (k_d)
 - Equilibrium dissociation constant (K_D)
- Quantitation
- Epitope mapping

Traditional SPR instruments

Traditional SPR

Basics of SPR OpenSPR: Localized SPR

Benefits of LSPR

ഹ്ല

Agenda

- 1. Intro to Nicoya
- 2. Basics of SPR
- 3. Applications

4. OpenSPR

Compatible with:

- Proteins/peptides
- Antibodies
- Nucleic acids
- Lipids
- Small molecules*

*application dependent

- Adeno-associated viruses (AAV)
- Virus-like particles (VLPs)
- Hormones/cytokines
- Crude samples

Supported assays

Kinetics/affinity characterization Kinetics/affinity screening Yes/no binding Competition assays Concentration analysis Epitope mapping

Direct binding kinetics of SARS-CoV-2 mAb in serum

- Direct detection of SARS-CoV-2 mAb in 50% diluted serum, with RBD of the spike protein and fast screening method.
- Ability to measure viral-antigen and antibody interaction in serological sample is key to developing sensitive diagnostic assay.

Parameter	SARS-CoV-2 mAb in buffer	SARS-CoV-2 mAb in Serum
k _a [1/M*s]	1.51e5 (±2.17e0)	1.30e5 (±3.94e0)
k _d [1/s]	1.20e-4 (±1.60e-5)	6.75e-5 (±2.00e-5)
К _р [М]	7.93e-10 (±1.06e-10)	5.18e-10 (±1.53e-10)

Discovering novel therapeutic peptides

- HA-RHAMM interaction is pro-angiogenic and inflammatory.
- Full length RHAMM production and isolation is difficult, thus a mini-peptide (7 kDa RHAMM) was synthesized.
- SPR showed 7 kDa RHAMM has similar affinity for HA and tubulin-derived peptide as that of the full length RHAMM.
- 7 kDa RHAMM is an efficient and effective replacement of full length RHAMM, and can be used for screening and discovering novel ligands.

Characterizing SARS-CoV-2 antibodies

Capture antibody

Detector antibody

Affinity Ranking

Antibody	kon (1/M*s)	koff (1/s)	KD
CoV-2 Ab01	8.92e4	5.93e-4	6.65 nM
CoV-2 Ab02	1.07e5	5.69e-5	534 pM
CoV-2 Ab03	1.26e6	7.74e-5	60.9 pM
CoV-2 Ab04	2.69e5	3.81e-5	141 pM

Epitope binning

Agenda

- 1. Intro to Nicoya
- 2. Basics of SPR
- 3. Applications
- 4. OpenSPR

Features

Channels	2
Injection	Semi-Automated
Sensor docking	Automated
Buffer selection	Automated 3 buffer selection
Temperature control	4 - 40°C (lower limit 10°C below ambient)
Flow rate	5 - 200 µl/min
Sample volume	150 μL (100 μL sample loop + 50 μL)
Affinity range	mM - pM

Sensors

Standard sensors

High sensitivity sensors

OpenSPR-XT

- 2 channels
- Sample area cooled to 4°C
- 2 x 96-well plate capacity
- Automated injections
- 24 hours unattended operation

Injection	Automated
Sample cooling	4 - 22°C
Sample volume	200 µL

Why consider SPR for your research?

- SPR data are now essential in presenting binding kinetics
- More and more researchers are using SPR data to compliment their publications
- SPR field has been growing rapidly in the last 10 years and has became a stable instrument in research environments

OpenSPR cited in 170+ publications

م

Accelerate your research with OpenSPR

Thank you!

www.nicoyalife.com | info@nicoyalife.com

Join us on our mission to improve human life

www.nicoyalife.com | info@nicoyalife.com

Additional Applications Slides

Studying binding of protein and virus-like particles

Full Application Note

- Virus-like particles (VLPs) are complex molecules composed of multiple subunits that resemble a specific virus without its genetic material.
- Their applications include the development of therapies and vaccines against viral diseases, as well as the identification of viral protein components.
- OpenSPR-XT instrument was used to detect a VLP with an approximate molecular weight of 10 MDa to an immobilized antibody. Binding of the VLP could be detected at sub-nanomolar concentrations.

Receptor-based peptides for leukotoxin inhibition

Application: Protein – Peptide

- Goal of study: inhibition of leukotoxin (LtxA) lymphocyte function-associated antigen-1 (LFA 1) binding.
- SPR data revealed the binding kinetics between each of the designed peptides and LtxA, with peptide W2S4 having a reduced affinity for the toxin.
- Target-based peptides were used to inhibit LtxA activity, and a similar approach could be used to hinder the activity of other RTX toxins.

Applications Elucidating immune signaling pathways

Application: Protein – Nanobody

- HACS1 is a signaling adaptor protein involved in angiogenesis, while PIRB contributes to both innate and adaptive immune responses.
- Inactivation leads to hypersensitivity, enhanced Tcell response and cytokine signaling.
- SPR revealed HACS1 SH3 domain has varying affinities for both mouse (15.9 µM) and human PIRB (8.7 µM).
- These interactions may influence immune and neuronal cell fate.

Rapid detection of SARS-CoV-2 variants

Application: Protein – Antibody

- Goal of study: identification of SARS-CoV-2 variants.
- SPR data showed strong interaction between the monoclonal antibody (2E8) and SARS-CoV-2 Spike protein (K_D = 7.38 nM). In conjunction with another mAb, in a sandwich ELISA was able to distinguish between delta, alpha/gamma, and beta variants.
- Rapid detection of SARS-CoV-2-variants is critical to develop point-of-care-diagnostics and prevent spread of unique and deadly variants.