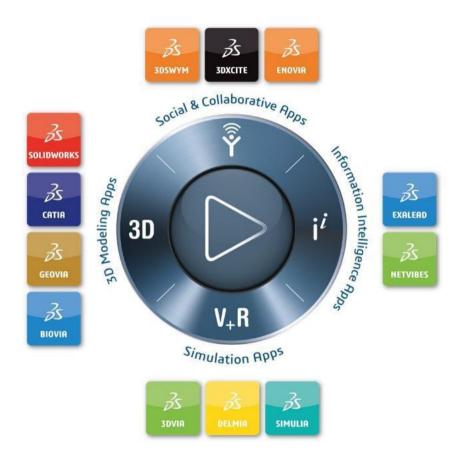
Accelerate Science-Led Innovation for Competitive Advantage

BIOVIA Discovery Studio

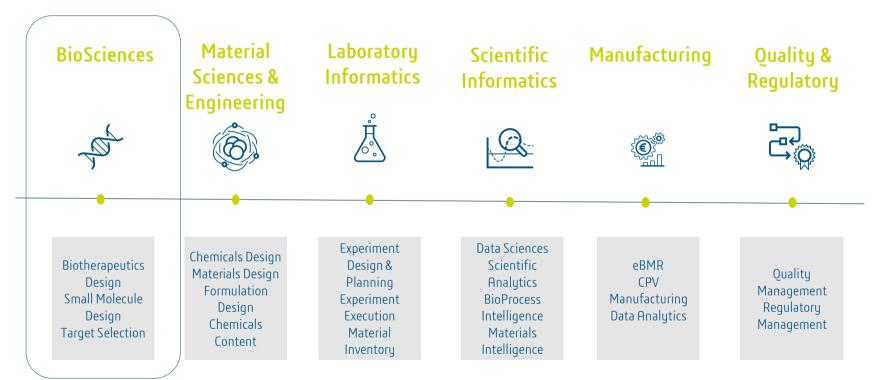
Basic training course


訊聯基因數位股份有限公司 分子數位中心 資深經理陳冠文 (Gene)

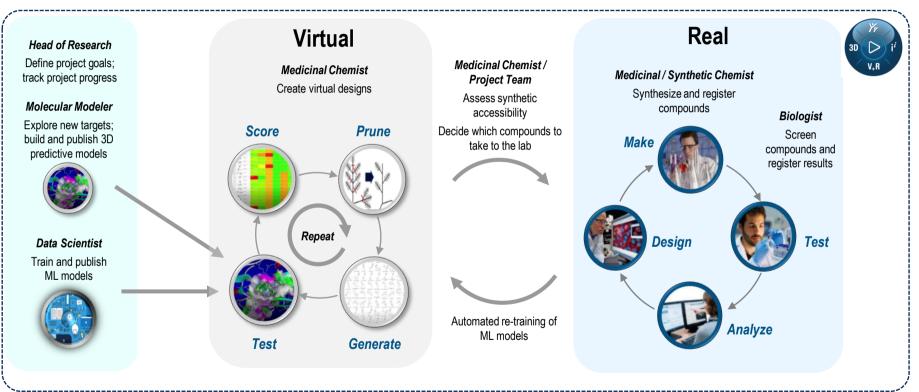
🏅 訊聯基因數位 💋

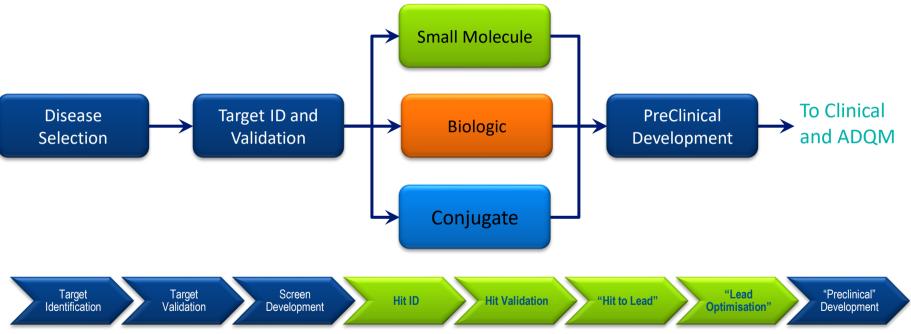
3DEXPERIENCE[®]

Copyright@2024 GGA Corp., All rights reserved.


Copyright and Disclaimer

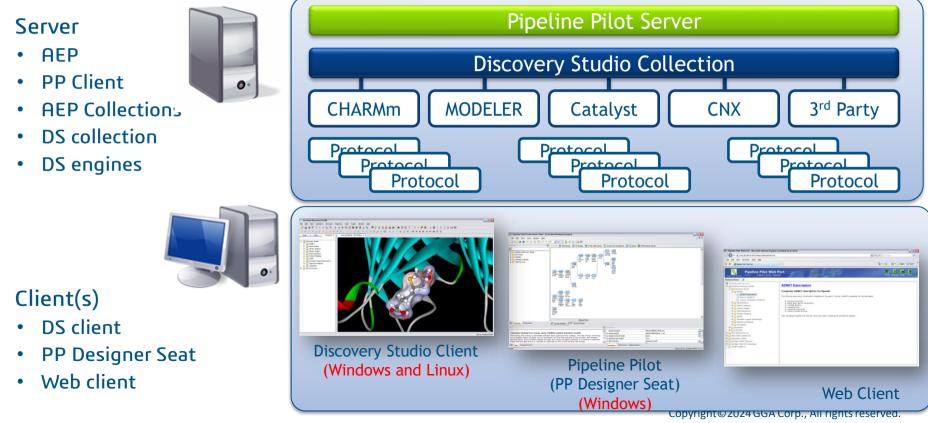
- Copyright © 2024 GGA corp. All rights reserved.
 - This presentation and/or any related documents contains statements regarding our plans or expectations for future features, enhancements or functionalities of current or future products (collectively "Enhancements"). Our plans or expectations are subject to change at any time at our discretion. Accordingly, GGA Corp. is making no representation, undertaking no commitment or legal obligation to create, develop or license any product or Enhancements.
 - The presentation, documents or any related statements are not intended to, nor shall, create any legal obligation upon GGA Corp., and shall not be relied upon in purchasing any product. Any such obligation shall only result from a written agreement executed by both parties.
 - In addition, information disclosed in this presentation and related documents, whether oral or written, is confidential or proprietary information of GGA Corp.. It shall be used only for the purpose of furthering our business relationship, and shall not be disclosed to third parties.


BIOVIA SCIENTIFIC PLATFORM


GENERATIVE THERAPEUTICS DESIGN PROCESS

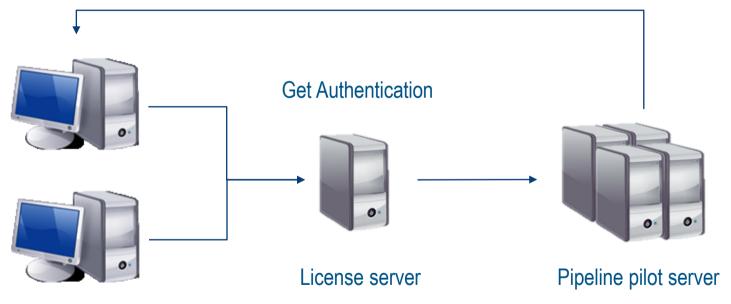
S BIOVIA

Life Sciences R&D Top Level Workflow

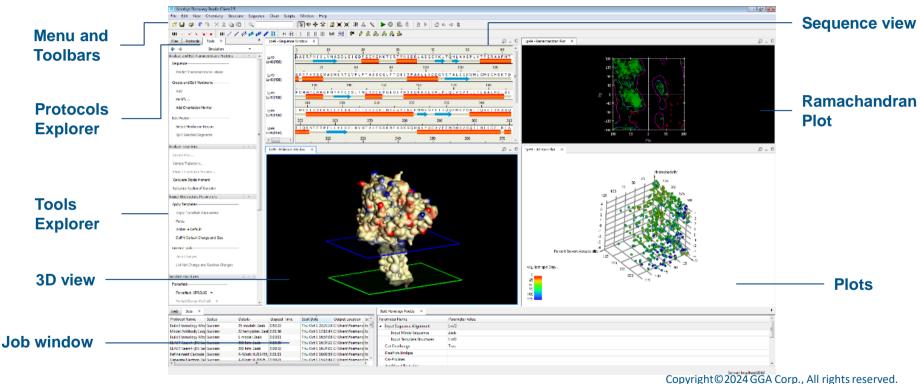

Copyright@2024 GGA Corp., All rights reserved.

SBIOVIA ざ 訊聯基因數位

Sussement | The **3DEXPERIENCE**® Company

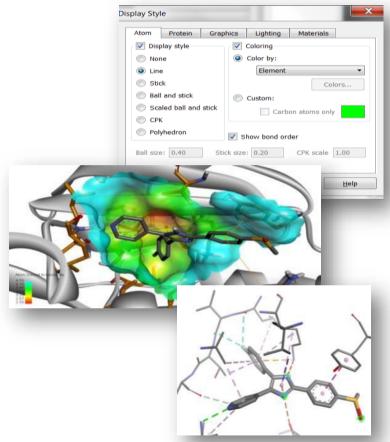

Discovery Studio Product Architecture

• Discovery Studio science runs on Pipeline Pilot:


Discovery Studio Product Architecture

Download results

Client

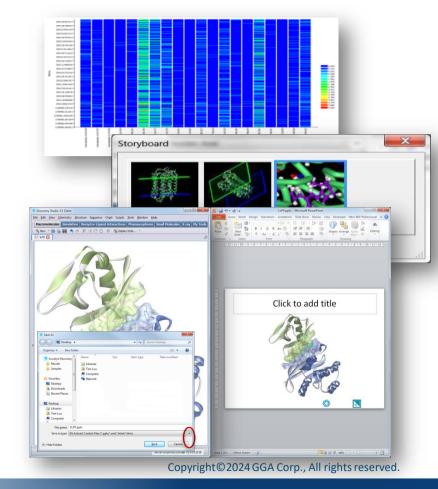

Supporting technology: Discovery Studio Client

SBIOVIA ざ 訊聯基因數位

Discovery Studio Client

- General
 - Display Style
 - Ball and Stick, CPK, Solid Ribbon
 - Surface/Protein Surface
 - Shadow
 - Clipping Plane
 - Monitors
 - Distance, Angle, and Bump
 - Interactions
 - RMSD

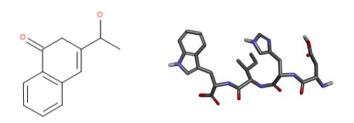
Copyright©2024 GGA Corp., All rights reserved.



Discovery Studio Client

- General
 - Sequence view
 - Secondary structure prediction
 - Chart functions and data plots
 - Line plots, point plot, heat maps. etc
 - Collaboration, presentation functions
 - Story board, Active X
- Protocols
 - Automation and customization
 - Perl scripting

SBIOVIA ざ 訊聯基因數位



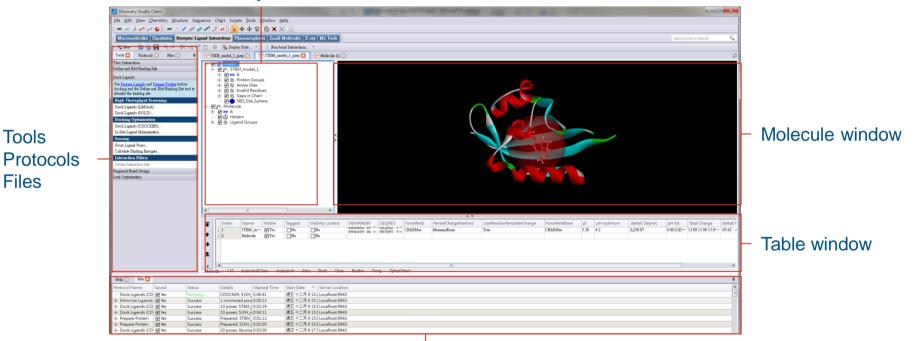
Data integration


- Open exist file
 - Chemical structure format
 - Sequence format
 - Protein structure format
- Download from database
 - Protein Data Bank (PDB)
 - NCBI Entrez Sequence Search
- Create new one

S BIOVIA 👸 訊聯基因數位

• Small molecule, DNA, RNA, Peptide

>sp|P05067|A4_HUMAN Amyloid beta A4 protein OS=Homo sapiens GN=APP PE=1 SV=3 MLP6LALLLLAAWTARALEVPTDGNAGLLAEPQIAMECGRLNMHMINVQNGKWDSDPSGTK TCIDTKEGILQYCQEVYPELQITNVVEANQPVTIQNWCKRGRKQCKTHPHFVIPYRCLVG EFVSDALLVPDKCKFLHQERMDVCETHLHWHTVAKETCSEKSTNLHDYGMLLPGIDKFR GVEFVCCPLAEESDNVDSADAEEDDSDVWWGGADTDYADGSEDKVVEVAEEEEVAEVEEE EADDDEDDEDDGDEVEEEAEEPYEEATERTTSIATTTTTTTESVEEVVREVCSEQAETGPC RAMISRWYFDVTEGKCAPFFYGGCGGNRNNFDTEEYCMAVCGSAMSQSLLKTTQEPLARD PVKLPTTAASTPDAVDKYLETPGDENEHAHFQKAKERLEAKHRERMSQVMREWEEAERQA KNLPKADKKAVIQHFQEKVESLEQEAANERQQLVETMMARVEAMLNDRRRLALENYITAL



Copyright@2024 GGA Corp., All rights reserved.

DS Client - Windows

Hierarchy window

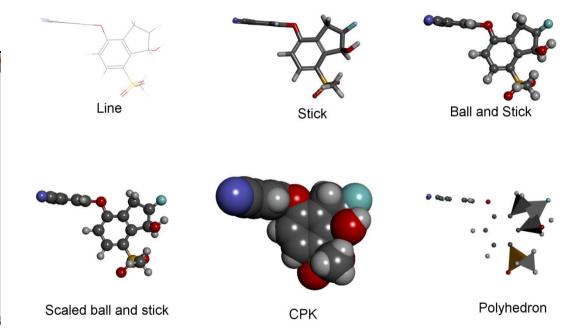
Job window

Copyright©2024 GGA Corp., All rights reserved.

Tools

Files

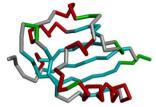
Display style

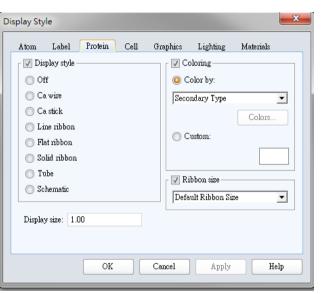

	— Protein	display
Discovery Studio Client File Edit View Chemistry Structure Sequence Chart Scripts Tools Wind orr / / A & & & & & & & & & & & & & & & & &	Atom Protein Cell Display style Off Line Stick Ball and stick CPK	Graphics Lighting Materials Coloring Color by: Element Colors Custom: Carbon atoms only
	Polyhedron Ball size: 0.40 OF	Show bond order Stick size: 0.20 CPK scale: 1.00 K Cancel Apply Help Ight©2024 GGA Corp., All rights reserved.

Atom display

Dis	play Style	×
[Atom Protein Cell	Graphics Lighting Materials
	🕼 Display style	Coloring
	Off Off	Color by:
	🔘 Line	Element
	🔘 Stick	Colors
	🔘 Ball and stick	O Custom:
	🔘 Scaled ball and stick	Carbon atoms only
	🔘 СРК	
	🔘 Polyhedron	Show bond order
	Ball size: 0.40	Stick size: 0.20 CPK scale: 1.00
	0.	K Cancel Apply Help




Copyright©2024 GGA Corp., All rights reserved.


SBIOVIA ざ訳聯基因數位

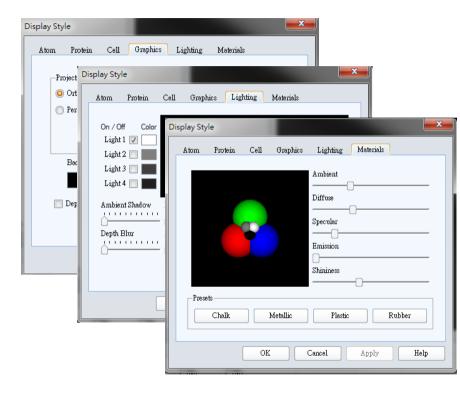
Protein display

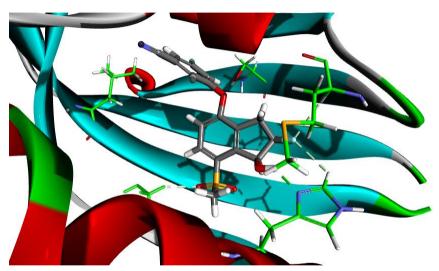
Flat ribbon

Ca stick

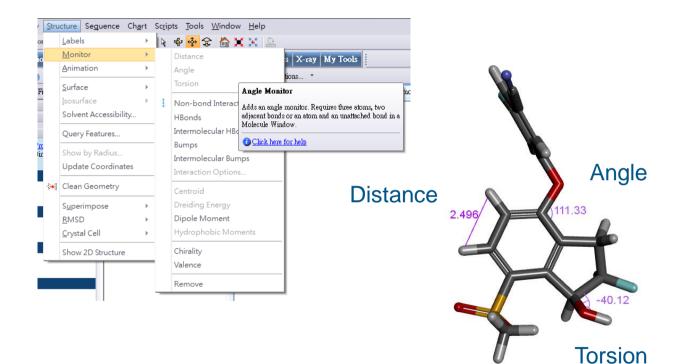
Solid ribbon

Line ribbon


Tube


Schematic

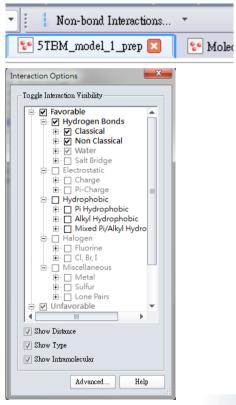
Display style cont.



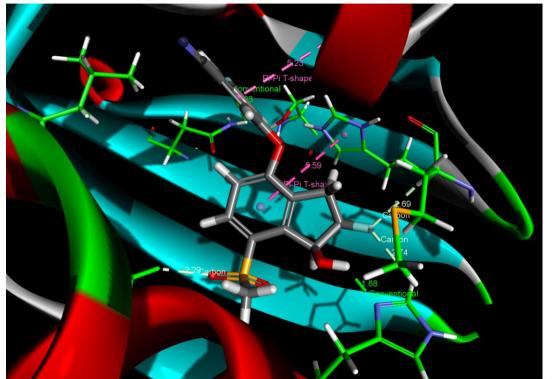
Copyright@2024 GGA Corp., All rights reserved.

SBIOVIA ざ 訊聯基因數位

Monitor and Non-bond Interactions tools



Copyright©2024 GGA Corp., All rights reserved.

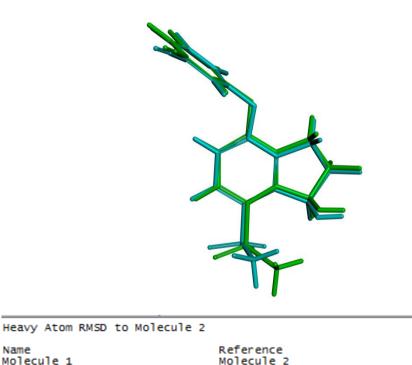


Monitor and Non-bond Interactions tools

copyright@2024GGA corp., All rights reserved.

Surface

Stru	<mark>Labels → Monitor → Animation → Chart</mark>	<mark>∖</mark> & ∲ ₹	ores Small Molecules X		
	Surface	🌚 Add	TBM_model_1_prep	😵 Molec	
	<u>I</u> sosurface ►	Remove	Display Style		
	Solvent Accessibility	5TBM_model_	Atom Protein Cell Surface	Graphics Lighting Materials	
	Query Features	⊨ A % Protein Gro	Display style	Coloring	
	Show by Radius Update Coordinates	Active Sites Invalid Res Gaps in Ch	Surface rendering	© Color by: Atom Charge ▼ Colors	
`	Clean Geometry	SBD_Site_S ecule	Wire mesh	O By grid:	
	Superimpose	Hetatm	Probe radius: 1.10	Colors	
	RMSD •	Ligand Groups			
	<u>C</u> rystal Cell ►	1-bond Monite		O Custom:	
	Show 2D Structure	nitored Atoms	• 0	Custom Reverse Side:	
			OK	Cancel Apply Help	Copyright©2024 GGA Corp., All rights reserved.



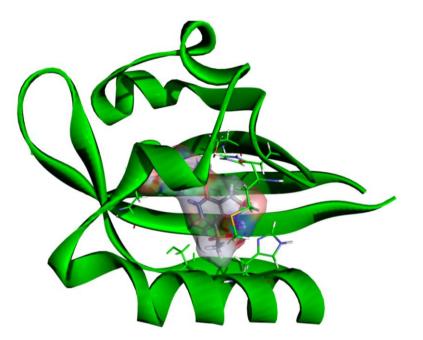
Overlay/Superimpose/RMSD

Name

Molecule 1

<u>S</u> tru	cture	Segue	ence	Ch <u>a</u> rt	Sc <u>r</u> ipts	<u>T</u> ools	<u>W</u> in	dow	<u>H</u> elp
	<u>L</u> abe	ls		►	k 49	, <mark>∲</mark> ₹	2 🏅	X	💥 🔝
	<u>M</u> oni	itor		►	Phar	maconl	ores	Sma	ll Molecul
	<u>A</u> nim	ation		►		tyle 🔻			-bond Inters
	<u>S</u> urfa	ce		Þ	_1_prep		<u> </u>	urface	
	Isosu	rface		Þ				011000	
	Solve	ent Acce	ssibili	ty		model_	1		
	Quer	y Featu	res		⊨ A V∕Prot	tein Gro	oup		
	Show	/ by Rac	lius		112	ve Sites Ilid Resi			
	Upda	ate Coo	rdinat	es	🎾 Gap	os in Ch	ain		
`+	Clear	n Geom	etry		 SBD ecule ecule 	_Site_S	ph		
	S <u>u</u> pe	rimpose	е	F	ecule				
	<u>R</u> MS	D		×	A	Atoms			
	<u>C</u> ryst	al Cell		►	He	eavy Ate	oms		
	Show	/ 2D Stru	ucture		Se	t Refer	ence		
_			÷] 🏞 M	0.0	opolym	er Stri	ucture	s
] 🔧 Mo ባ 🔨 Mo	BA	Seque	nce A	lignm	ent

SBIOVIA ざ訳聯基因數位

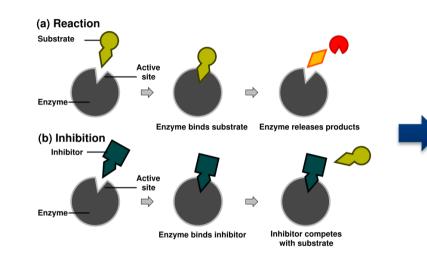


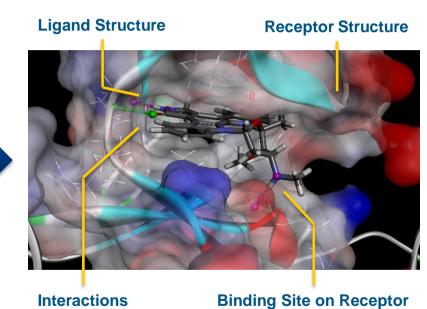
RMSD (A)

0.4219

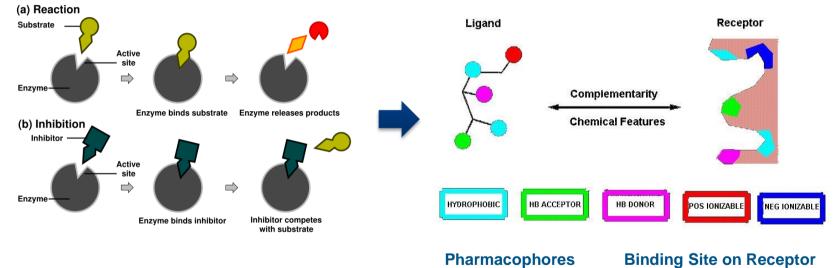
Hands-on

- PDB code: 5TBM (HIF2 alpha)
- Atom display:
 - His248, Met252, His293
 - 79A401 (PT2385)
- Protein display
 - Solid ribbon in Green color
- Surface
 - 79A401 (PT2385)




Copyright@2024 GGA Corp., All rights reserved.

Docking & Scoring – Structure-Based Design



Copyright©2024 GGA Corp., All rights reserved.

Docking & Scoring – Pharmacophore-Based Design

Ligand Structure

Receptor Structure

Copyright©2024 GGA Corp., All rights reserved.

SUSTEMES | The **3DEXPERIENCE** Company

Strategy for Small Molecule Drug Design

	Receptor structure available	Receptor structure unavailable
Ligand structure available	 Docking & Scoring Structure-based drug design Structure-based pharmacophore drug design 	 QSAR Ligand-based drug design
Ligand structure unavailable	 De novo drug design Fragment-based drug design 	↓ Library Design/Analysis Diversity

Copyright©2024 GGA Corp., All rights reserved.

SBIOVIA ざ訳聯基因數位

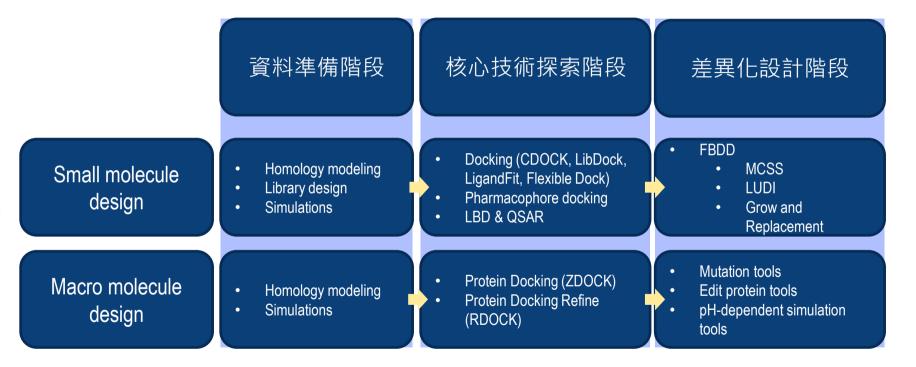
Strategy for Small Molecule Drug Design

	Receptor structure available	Receptor structure unavailable
Ligand structure available	 Docking & Scoring Structure-based drug design Structure-based pharmacophore drug design 	 QSAR Ligand-based drug design
Ligand structure unavailable	 De novo drug design Fragment-based drug design 	▲ Library Design/Analysis Diversity

Copyright©2024 GGA Corp., All rights reserved.

SBIOVIA ざ訊聯基因數位

Sustemes | The **3DEXPERIENCE** Company


Product design stages

n | 9/13/2024

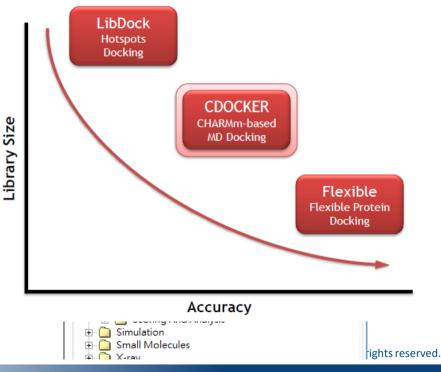
Confide

බි

DS.COM/BIOVIA © Das

Copyright©2024 GGA Corp., All rights reserved.

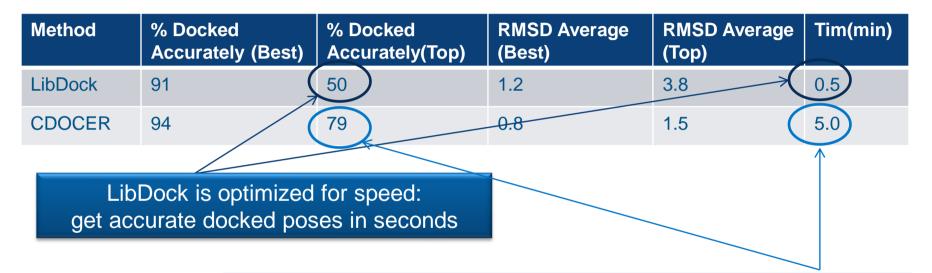
SBIOVIA ざ訳聯基因數位



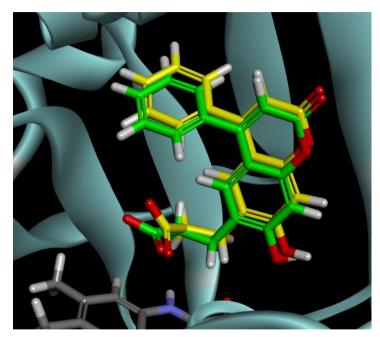
Docking from Tool Panel

- Docking tools in DS
 - Dock Ligands (CDOCKER)
 - Dock Ligands (LibDock)
 - Dock Ligands (GOLD)

Dock Ligands Use <u>Prepare Ligands</u> and <u>Prepare Protei</u>	? <u>n</u> before docking and the
Define and Edit Binding Site tool to ident	ify the binding site.
High-Throughput Screening	
Dock Ligands (LibDock)	
Dock Ligands (GOLD)	
Docking Optimization	
Dock Ligands (CDOCKER)	
In Situ Ligand Minimization	-
Scoring	
Score Ligand Poses	
Calculate Binding Energies	
Interaction Filters	
Define Interaction Site	
L.	


• Docking tools in DS (Protocol)

Comparative performance of LibDock and CDOCKER on AstexDiverse dataset



1. Hartshorn, et al. J. Med. Chem., 50 (4), 726 -741 (2007) 3 GHz CDOCKER is optimized for accuracy: get significant improvement in rank-ordering of correct pose and RMSD to X-ray structure

Docking Test for D-Amino Acid Oxidase Inhibitors

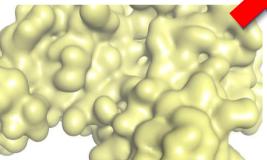
Green: Crystal conformation Yellow: Calculated conformation

- 14 Crystal DAO Structures for the docking test
- Average RMSD: 0.6769Å

Copyright©2024 GGA Corp., All rights reserved.

Structure-Based Drug Design

- Using knowledge of a receptor to guide design of new ligands
 - Structure of the receptor is known
 - Can use either an experimental or homology model
- One approach is to identify potential ligands that can bind to receptor
 - High-throughput virtual screening
 - Rigid or flexible docking
 - Scoring of docked ligands
- May need to identify the binding site
 - Active site search


 $Copyright @ 2024\,GGA\,Corp., All\,rights\,reserved.\\$

♂S BIOVIA ≷ 訊聯基因數位

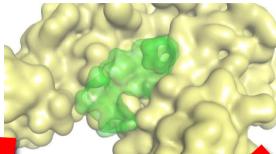
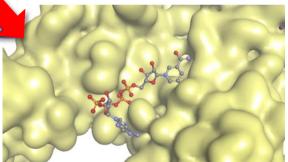


Illustration for Structure-Based Design and Analysis



1. Obtain receptor and ligand structures

2. Define binding site

3. Dock ligand and validate results

Copyright©2024 GGA Corp., All rights reserved.

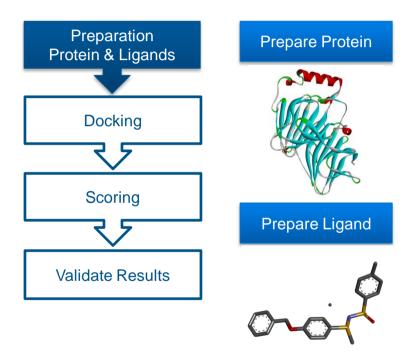
Workflow of Virtual High Throughput Screening

- Standardize molecules
- Cluster subsets

Copyright@2024 GGA Corp., All rights reserved.

DASSAULT | The **3DEXPERIENCE**[®] Company

Docking Workflow



- In order to maximize the rate of success, the evaluation phase in each steps is very important.
- Requirements
 - Known active compounds and decoy
 - Bound molecules
 - Optimize the parameters of docking technique
 - Prioritized the molecules in library before proceeding the docking and scoring steps

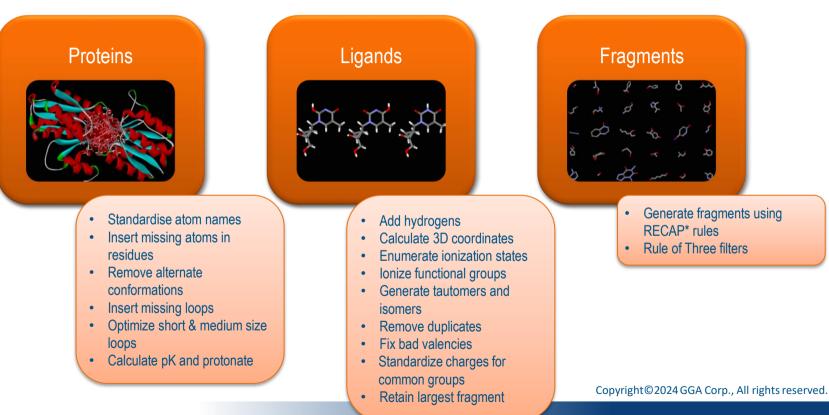
AULT | The **3DEXPERIENCE**[®] Company

Docking Workflow

Protein Preparation

- Repair deficient structure
- Identify binding site
- Modify the protonation state

Ligand Preparation


- Add hydrogen atom
- Generate 3D structure coordinates
- Creating isomers
- Remove duplicates
- Valence modification
- Standardization charges

 $Copyright @ 2024\,GGA\,Corp., All\,rights\,reserved.\\$

SBIOVIA ざ訳聯基因數位

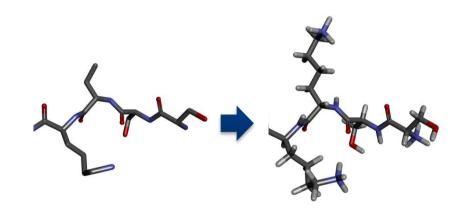
SBD: Input Preparation

SBIOVIA ざ 訊聯基因數位

CONTRACTOR SUSTEMENT I THE 3DEXPERIENCE® Company

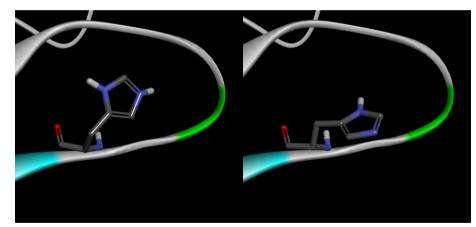
Selecting the Protein Receptor

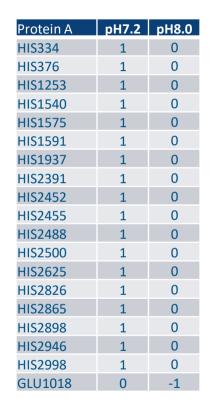
- Choosing the protein receptor
- Probably have a receptor in mind already
 - Based on biological or medical problem
 - Reinforced by biological data
- Requires a three-dimensional structure of the receptor
 - X-ray crystal structure
 - NMR structure
 - Homology model
- Can be an apo form of receptor


 $Copyright @ 2024\,GGA\,Corp., All\,rights\,reserved.\\$

Protein Preparation

- Before any docking can be performed, the receptor must be properly prepared
 - Particularly a concern with PDB files
- Preparation includes having...
 - All residues completed
 - Correct chemistry
 - Correct bond orders
 - Correct atom valences
 - All required hydrogen atoms added
 - Correct formal charges

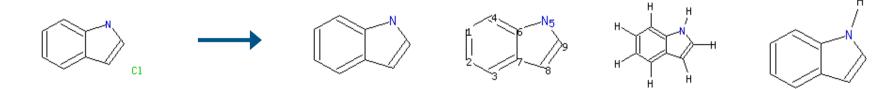

Copyright@2024 GGA Corp., All rights reserved.



Protonation state

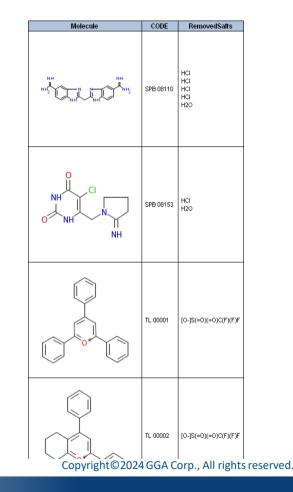
- Calculate pKa for each residue in different pH
- Modify the protonation (ionization) status

Example for His334 of Protein A in different protonation status


Copyright©2024 GGA Corp., All rights reserved.

Standardize molecules

- Beautification
 - Keep/Remove largest/smallest fragments (option of Standardize Molecule)
 - Add/Remove atom numbers (found in Utilities)
 - Add/Remove hydrogens
 - Add hetero hydrogens (option of Add Hydrogens component)
 - Center molecule (option of Standardize Molecule)



A Corp

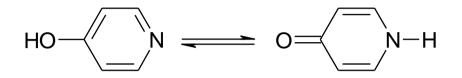
Standardize molecules cont. - Strip salts

- *Strip Salts* will strip a parent molecule of its counter ions.
- Chemistry Data\Queries\Salts.sd contains any defined salt structure
- User defined salt queries can be added via parameter User Salts
- Further components: *Identify Salts* and *Generate Salts*

Ligand preparation

Performs the following steps, some of which can be controlled by the protocol parameters:

- Generate a canonical tautomer
- Keep only the largest fragment
- Set standard formal charges on common functional groups
- Kekulize the molecule
- Enumerate ionization states at a given pH range (Optional)
- Enumerate tautomers (Optional)


- Enumerate isomers (Optional)
- By default only unspecified bonds and atoms are enumerated
- Remove duplicate structures (Optional)
- Filter structures that violate Lipinski rules (Optional)
- Generate a standard 3D conformation (Optional)
- Catalyst is used to generate a reasonable 3D conformation

Copyright©2024 GGA Corp., All rights reserved.

♂ BIOVIA ≷ 訊聯基因數位

Tautomers

Compounds whose structures differ markedly in arrangement of atoms, but which exist in easy and rapid equilibrium, are called tautomers.

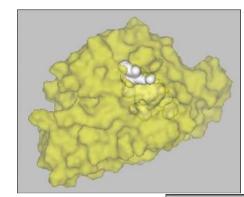
This means:

- Possible duplicate molecules may be missed.
- Different structures may have different values for calculated properties.

Protein Reports and Utilities Tools

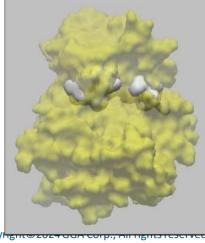
- Allows you to:
 - Renumber sequences
 - Summarize information about the protein
 - Generate hydrophobicity plots
 - Split structures into distinct molecules
 - Clean protein molecules
 - Add missing atoms
 - Fix connectivity
 - Fix names
 - Define a template for a nonstandard amino acid

100	ls 🔀 👘	Files 🖂				
		Nucleic A	cid		 	
Build	and Edit	Protein				
Query	/ Online I	Databases				
Protoi	n Poport					
-	re Protein					
Spli	t Chains	\$				
A11	Protein	Non-Pro	tein			
Mar	ual Prej	paration				
		<u>in Report</u> view a su				d residues
Clea	n Protein					
Shov	w Clean R	leport				
Inse	rt Loop					
	't Loop					
	age Conf					
	umher Ser	quences				
	tonate Pi	rotein				
Prot Pred	tonate Pi ict pK of 1	rotein the titratab to the pred			the pr	otein at gi
Prot Pred pH a	tonate Pi ict pK of ccording	the titratab	licted pK	values	the pr	otein at gi
Prot Pred pH a Calc	tonate Pr ict pK of ccording ulate Prot	the titratab to the pred	licted pK tion and	values	: the pr	otein at gi
Prot Pred pH a Calc Mod	tonate Pr ict pK of ccording ulate Prot lify Protor	the titratab to the pred ein Ioniza	licted pK tion and e	values	: the pr	otein at gi
Pred pH a Calc Mod Aut	tonate Pr ict pK of ccording ulate Prot lify Protor	the titratab to the pred ein Ioniza nation Stat reparatio	licted pK tion and e	values	: the pr	otein at gi
Prod Pred pH a Calc Mod Aut	tonate P ict pK of ccording ulate Prot ify Proto omatic P are Protei	the titratab to the preci ein Ioniza nation Stat reparatio n	licted pK tion and e on	values	: the pr	otein at gi
Prot Pred pH a Calc Mod Aut Prep	tonate P ict pK of ccording ulate Prot ify Protor omatic P are Protei h Sequence	the titratab to the pred tein Ioniza nation Stat reparatio n res by Sim	licted pK tion and e on ilarity	values	the pr	otein at gi
Prof Pred pH a Calc Mod Aut Prep Searc: Align	tonate P ict pK of ccording ulate Prot ify Protor omatic P are Protei h Sequence Sequence	the titratab to the pred ein Ioniza nation Stat reparatio n ces by Sim es and Stru	licted pK tion and e on ilarity	values	: the pr	otein at g
Pred pH a Calc Mod Aut Prep Searc Align Analy	tonate Pi ict pK of iccording ulate Proto lify Proto omatic F are Protei h Sequence rze Sequence	the titratab to the pred ein Ioniza nation Stat reparatio n ces by Sim es and Stru	licted pK tion and e on ilarity ictures	(values Residua	: the pr	otein at gi
Prot Pred pH a Calc Mod Aut Prep Searc Align Analy Analy	tonate Pr ict pK of iccording ulate Proto ify Proto omatic P are Protei Sequence rze Sequen rze Sequen	the titratab to the pred tein Ioniza nation Stat reparatio n tes by Sim tes and Stru nces a Conserva	licted pK tion and e on ilarity ictures	(values Residua	: the pr	otein at gi
Prod pred pH s Calc Mod And Prep Searc: Searc: Align Analy Analy Super	tonate Pr ict pK of ccording ulate Proto iffy Protor omatic P are Protei h Sequence sequence rze Sequence rze Sequence rze Proteir impose Pr	the titratab to the pred tein Ioniza nation Stat reparatio n tes by Sim tes and Stru nces a Conserva	licted pK tion and e on ilarity actures ation Patt	(values Residua	: the pr	otein at gi



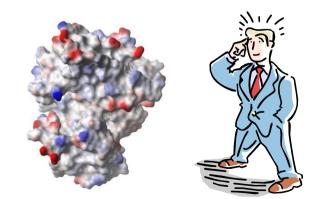
♂S BIOVIA 莨訊聯基因數位

Binding Site Identification


- Liang et al. 1998 found small molecule binding sites to be:
 - Indentations, crevices, or cavities
 - And often the largest site is the true binding site
- Laskowski et al. 1996 reported an analysis of cleft volumes:
 - Often the ligand is bound in the largest cleft
 - Usually the largest cleft is considerably larger than the others
- Jones and Thornton 1997 found that protein-protein interaction sites tend to be:
 - Flat and hydrophobic

SBIOVIA ざ 訊聯基因數位

HSV-1 thymidine kinase


Abl tyrosine kinase

Binding Site Identification

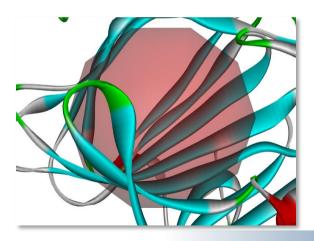
- With experimental structure determination of ligand complexes...
 - Binding site is often identified
 - Analogues can show additional features
 - Use the position of known ligands to limit possible binding sites for new candidates
- With unbound proteins...
 - Binding site may not be obvious
 - Binding site must be sought

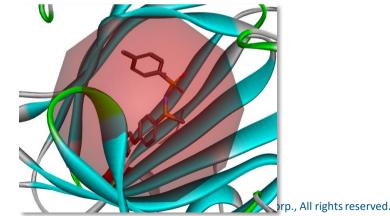
Copyright©2024 GGA Corp., All rights reserved.

Binding Site Identification

- When the binding site is unknown...
 - Search for cavities
 - Use experimental data
 - Site-directed mutagenesis studies
 - Cross-linking data
 - NMR results
 - Compare target to similar proteins
- Can be accomplished with Binding Site Tool panel

🌱 New	r 📄 🔒		× ≫ ₽ (🗒 🏶 🛃
Tools 🔀	Files 🔀			
View Interacti	ons			
Define and Ed	-	ite		
Define Recep				
Define Site				
The cavity m	ethod works	: best if you u	æ <u>Add Hydrogens</u> f	irst.
From Recept	or Cavities			
From PDB S	ite Records			
From Currer	it Selection			
Change Sit	e Size			
+ Expand	- Contra	ict		
Step through	Binding Site	:S.		
Ŧ +	+			
Show/Hide S	ite Spheres			
Show/Hide F	lesidues Out	side Spheres		
Dock Ligands				
	ed Design			

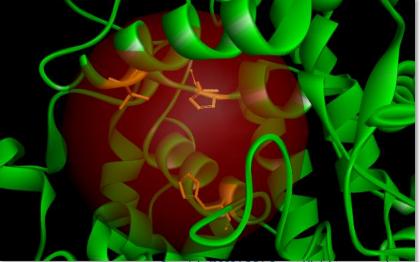

Copyright©2024 GGA Corp., All rights reserved.


♂S BIOVIA 莨訊聯基因數位

Site Search Approaches

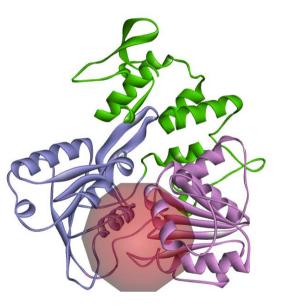
- Protein Shape
 - Based on the shape of the protein only
 - Identifies cavities and crevices

- Bound Ligand Volume
 - Requires presence of a bound ligand in protein
 - Identifies region around bound ligand



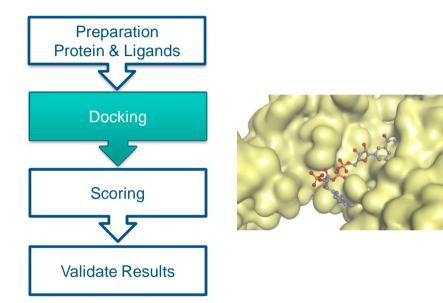
Site Search Approaches

- Use experimental data
 - Identified binding site from references
 - Site-directed mutagenesis studies
 - Compare target to similar proteins



Demo

- Prepare Protein 5JMT
- Prepare Ligand
- Define binding site
 - K200, T201, R202 (motif I, also called P-loop)
 - D285,E286 (Mn binding motif II)
 - Q455, R459, and R462 (motif VI)

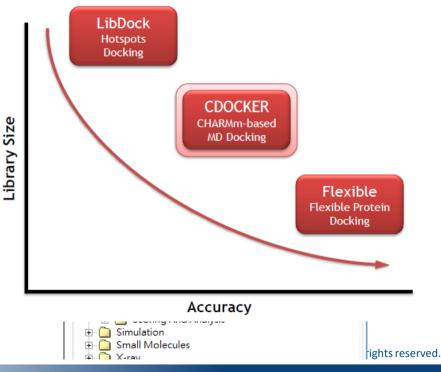


Copyright@2024 GGA Corp., All rights reserved.

Docking Workflow

Docking

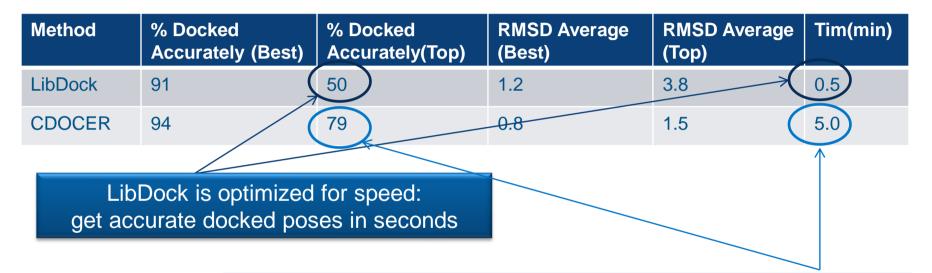
- Generate conformations
- Find a pose
- Docking tools in DS
 - Dock Ligands (CDOCKER)
 - Dock Ligands (LibDock)
 - Dock Ligands (GOLD, need extra license)
 - Dock Ligands (LigandFit)
 - Pharmacophore Docking
 - Flexible Docking



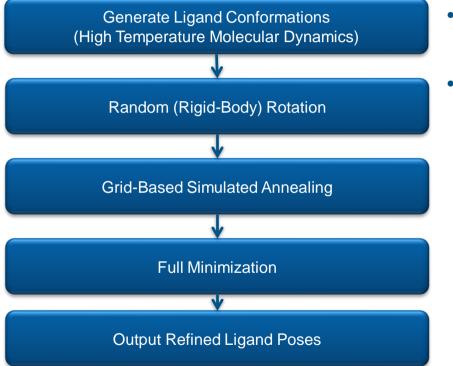
Docking from Tool Panel

- Docking tools in DS
 - Dock Ligands (CDOCKER)
 - Dock Ligands (LibDock)
 - Dock Ligands (GOLD)

Dock Ligands Use <u>Prepare Ligands</u> and <u>Prepare Prote</u> i	? <u>n</u> before docking and the			
Define and Edit Binding Site tool to ident	ify the binding site.			
High-Throughput Screening				
Dock Ligands (LibDock)				
Dock Ligands (GOLD)				
Docking Optimization				
Dock Ligands (CDOCKER)				
In Situ Ligand Minimization	-			
Scoring				
Score Ligand Poses				
Calculate Binding Energies				
Interaction Filters				
Define Interaction Site				
l.				

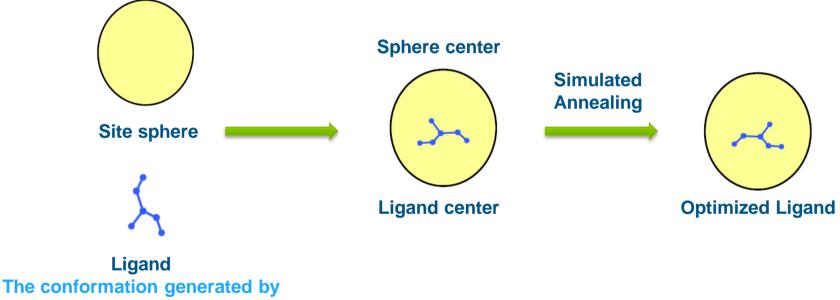

• Docking tools in DS (Protocol)

Comparative performance of LibDock and CDOCKER on AstexDiverse dataset



1. Hartshorn, et al. J. Med. Chem., 50 (4), 726 -741 (2007) 3 GHz CDOCKER is optimized for accuracy: get significant improvement in rank-ordering of correct pose and RMSD to X-ray structure

- CDOCK is a grid-based molecules docking method.
- Ligand conformations are obtained by Molecular Dynamic (MD) methods


Wu G, Robertson DH, Brooks CL III, Vieth M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER - A CHARMm-based MD docking algorithm. *J. Comp. Chem.* **2003**, 13, 1549

Copyright@2024 GGA Corp., All rights reserved.

SBIOVIA ざ 訊聯基因數位

CDOCKER : Ligand Fitting

high temperature MD

Copyright©2024 GGA Corp., All rights reserved.

Small Molecule Docking using CDOCKER

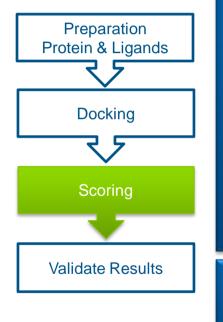
- 41 protein-ligand complexes from the PDB
 Success rates and CPU times for each algorithm
 Docking Algorithm
 success rate
 av/median CPU times
 - Structurally diverse set of ligands
 - All-atom representation used in published work^a
- Grid-based approach used in Discovery Studio
 - Faster method

DS BIOVIA 😽

No significant compromise on accu

Docking Algorithm	success rate	av/median CPU times
GOLD ^b	46.3	824/708 ^c
Dock ^b	51.2	200/114 ^c
FlexX ^b	53.7	65/35 ^c
CDOCKER (No Grid) ^b	82.9	2012/1740 ^c
Discovery Studio		
CDOCKER (Grid)	78.1	630/580 ^d

Single best docking run for each algorithm (Success is defined as RMSD < 2Å from X-ray structure)


# of rot.	total # of					
bonds	ligands	# of ligands docked correctly				
					CDOCKER	Discovery Studio
		Dockb	GOLD⁵			CDOCKER (Grid)
< 8	20	18	14	16	19	18
≥ 8	21	3	4	6	15	14

a. Erickson et al. J Med Chem (2004) 47:45-55

Copyright@2024 GGA Corp., All rights reserved.

Docking Workflow

Literature Scoring Functions

- Also known as Empirical/Knowledge-based scoring functions
- based on counting the number of various types of interactions between the two binding partners
- based on statistical observations of intermolecular close contacts in large 3D databases
- Scoring functions
 - LigScore 1 & 2
 - Piecewise Linear Potential (PLP) 1 & 2
 - Potential of Mean Force (PMF) & PMF04
 - Jain

Ö

• Ludi 1, 2, & 3

 $\frac{\text{Energy-Based Functions}}{\text{Binding energy calculation method based on the following formula}}$ $E_{\text{binding}} = E_{\text{complex}} - (E_{\text{ligand}} + E_{\text{receptor}})$

SBIOVIA ざ 訊聯基因數位

Scoring

- Scoring of docked poses is still a major challenge
- Aim of scoring:
 - Identification of the correct binding pose by lowest energy value
 - Ranking of protein-ligand complexes according to their binding affinities
- No single scoring function can correctly rank every protein-ligand complex
 - Relative contribution of different protein-ligand interactions may vary between structural families
- Use consensus scoring
 - Combination of several scoring functions

 $Copyright @ 2024\,GGA\,Corp., All\,rights\,reserved.\\$

Types of Scoring Functions

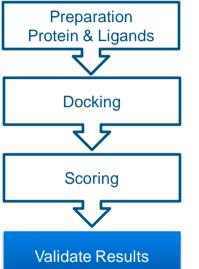
- Empirical scoring functions
 - Derived from training sets of protein-ligand complexes with determined affinity data
- Force field-derived functions
 - Handle the ligand binding prediction with the use of potential energies (nonbonded interaction terms)
 - Could include solvation and entropy contributions
- Knowledge-based functions
 - Based on atom pair potentials derived from structural databases
 - Forces and potentials are collected from known protein-ligand complexes to get a score for their binding affinities

Copyright©2024 GGA Corp., All rights reserved.

Consensus Scoring

- Combination of several scoring functions
- The common top rankers get a higher consensus rank than single outliers
- False positives can be detected easier than one singular scoring function
- Advisable to use a well-suited scoring function as consensus score always presents an average value

Consensus Scoring

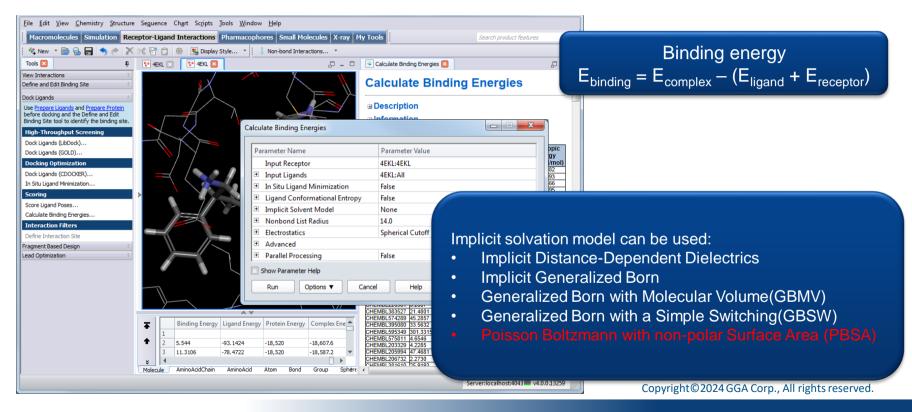

• 40% Example

Models	Score1	Score2	Score3	Score4	Consensus
mol1	12 0	55 0	43 0	241 0	0
mol2	22 0	46 0	113 0	<mark>283</mark> 1	1
mol3	112 1	92 1	221 1	299 1	4
mol4	78 0	82 1	182 0	251 0	1
mol5	98 1	77 0	¹⁹³ 1	263 0	2 ©2024 GGA Corp., All rights reserv

SBIOVIA 💐 訊聯基因數位

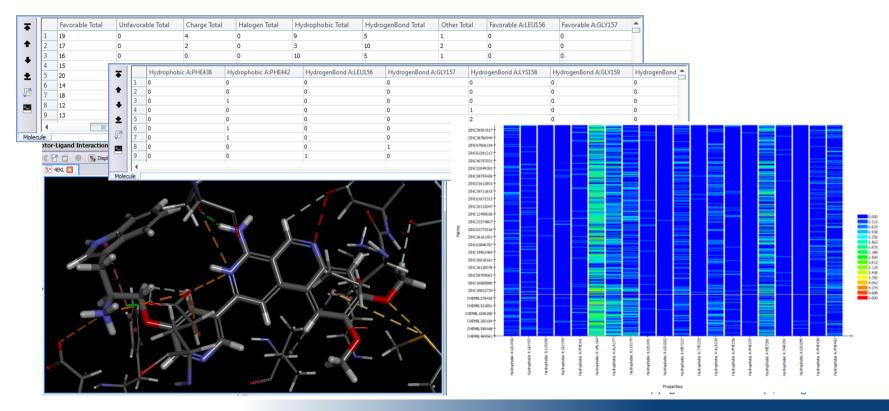
Docking Workflow

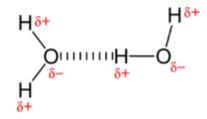
Search and filter for the hits

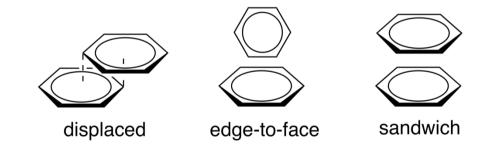

- Compare with experimental results
 - Key residues
 - RMSD with the reference structure
 - Salt bridge
- Calculate binding energy
- View the non-bond interactions between ligand and receptor
- View the non-bond interactions between ligand and receptor (2D diagram)

3DS.COM/BIOVIA © Dassault Systèmes | Confidential Information | 9/13/2024

Copyright@2024 GGA Corp., All rights reserved.


Binding Energies


Analysis - Analyze Ligand Poses



Non-covalent (Non-bond) interactions

- Hydrogen bond interactions
- Electrostatic interactions
- π -effects
- Van der waals forces
- Hydrophobic effects

Copyright@2024 GGA Corp., All rights reserved.

bonds strenghts

Covalent bond

Non-Covalent bond

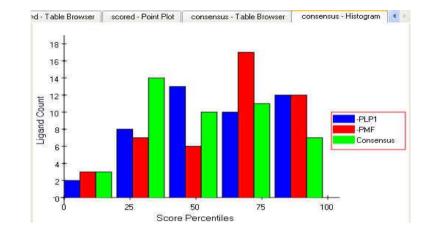
Туре	Energy	Туре	Energy
C-O bond	81 kcal/mol	Hydrophobic	<10 kcal/mol
C-C bond	86 kcal/mol	Hydrogen bond	2-30 kcal/mol
C-H bond	103 kcal/mol	Electrostatic	1-20 kcal/mol
C=C bond	143 kcal/mol	π-π aromatic	0-10 kcal/mol
C=O bond	165 kcal/mol	stacking	
		Van der Waals	0.1-1 kcal/mol

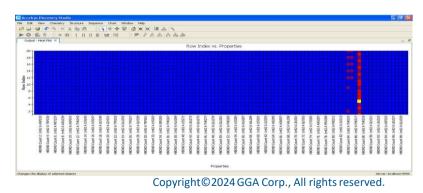
Copyright©2024 GGA Corp., All rights reserved.

SBIOVIA ざ訳聯基因數位

Analysis - Non-Bond Interactions

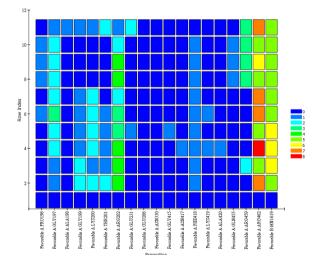
× Interaction Options Toggle Interaction Visibility E Favorable - V Hydrogen Bonds Classical Non Classical Water Salt Bridge Electrostatic Charge Pi-Charge 🗄 🗹 Hydrophobic ✓ Pi Hydrophobic Alkyl Hydrophobic Mixed Pi/Alkyl Hydrop... ⊢ 🗹 Halogen Fluorine CI, Br, I Miscellaneous Metal Sulfur ✓ Lone Pairs Unfavorable Steric Bumps Charge Repulsion Acceptor/Donor Clash Metal Repulsion Unsatisfied Show Distance Show Type Show Intramolecular Advanced... Help


Favorable (<i>See below</i>)	Unfavorable •Steric Bumps •Charge Repulsion •Acceptor-Acceptor class •Donor-Donor classes	Unsatisfied •Hydrogen bond donor •Hydrogen bond acceptor shes •Charged atoms
 Charge Attractive Charges Salt Bridge Pi-Cation Pi-Anion Halogen Halogen (Fluorine) Halogen (Cl, Br, I) 	 Hydrophobic Pi-Pi Stacked Pi-Pi T-Shaped Amide-Pi Stacked Alkyl Pi-Sigma Pi-Alkyl Other Metal-Acceptor Pi-Sulfur Sulfur-X Pi-Lone Pair 	 Hydrogen Bond Conventional Hydrogen Bond Carbon Hydrogen Bond Pi Donor Hydrogen Bond Water Mediated Hydrogen Bond Water Hydrogen Bond Salt Bridge


SBIOVIA ざ 訊聯基因數位

Pose Analysis

- Plot Charts of Scoring
 - Simple Line Plot
 - Histogram
 - Hit Rate Plot
- Run Analyze Ligand Poses protocol
 - Hbonds
 - Contacts
 - Heat Maps
- Optional energy minimization of each pose
 - Ligand Minimization Protocol
- Fits saved to a molecule table
 - Can be exported to an SD file

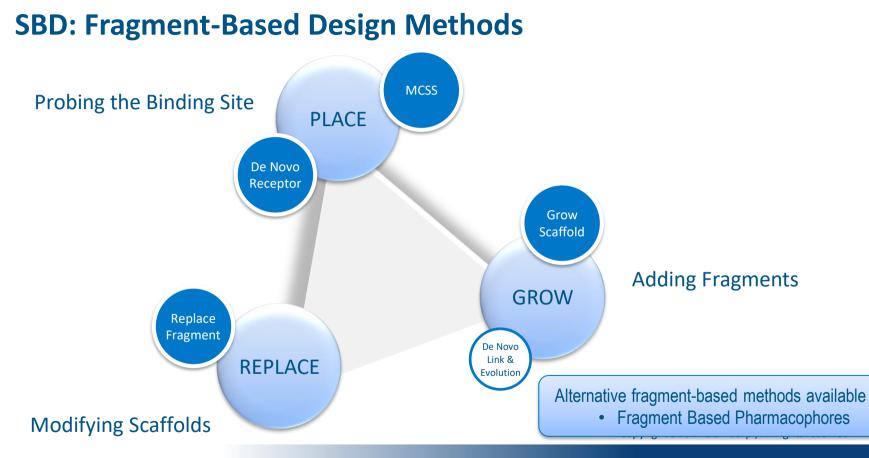


♂ BIOVIA <支訊聯基因數位</p>

Demo

- Analyze ANP poses by Analyze Ligand Pose protocol
- Draw the heat map by Chart tools
- Find the poses which interact with
 - K200, T201, R202 (motif I, also called P-loop)
 - D285,E286 (Mn binding motif II)
 - Q455, R459, and R462 (motif VI)
- Find the best pose

Copyright@2024 GGA Corp., All rights reserved.


Docking Workflow

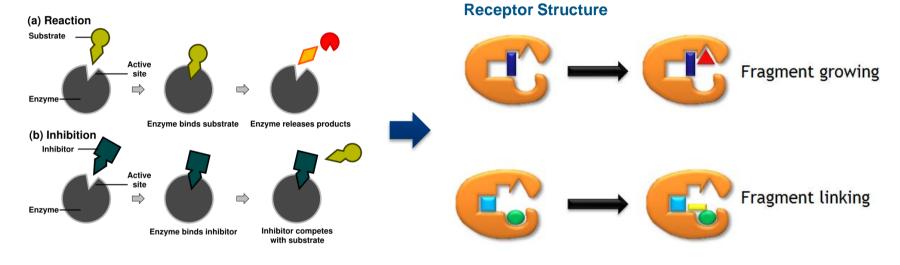
- In order to maximize the rate of success, the evaluation phase in each steps is very important.
- Requirements
 - Known active compounds and decoy
 - Bound molecules
 - Optimize the parameters of docking technique
 - Prioritized the molecules in library before proceeding the docking and scoring steps

AULT | The **3DEXPERIENCE**[®] Company

SBIOVIA ざ訊聯基因數位

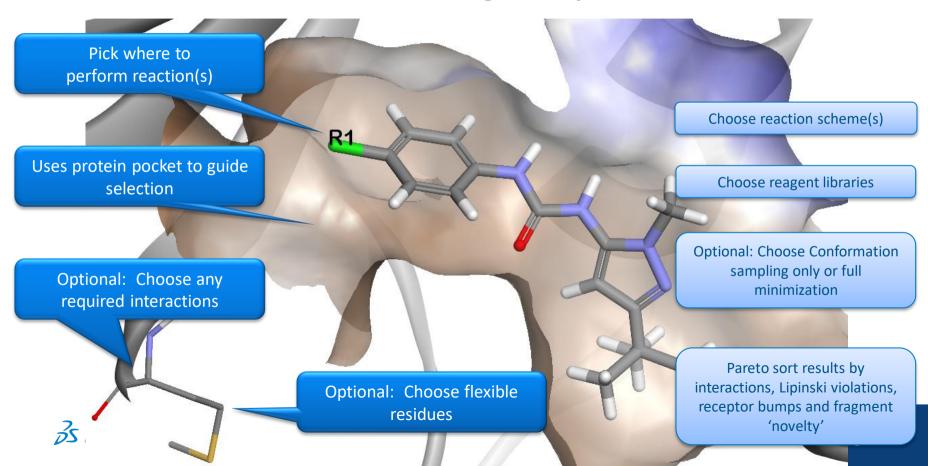
Sustemes | The 3DEXPERIENCE® Company

SBD: Fragment-Based Design Methods

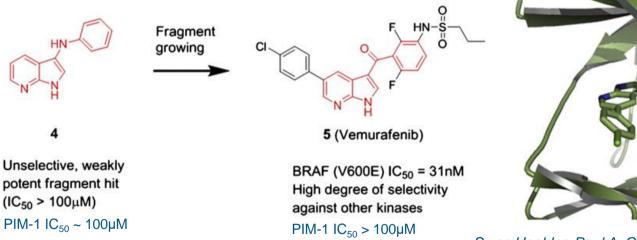

- GROW
 - Reaction-based in situ ligand enumeration
 - E.g., Amide synthesis, Esterification, Hiyama, Kuyama, Negishi, Stille, Suzuki, Williamson Ether
 - Pre-filtered sets of reagents selected from ACD
- REPLACE
 - Fragment based in situ isostere replacement
 - E.g., scaffold-hopping, R-group replacement
 - Pre-filtered set of 1.5M fragments generated from SCD

Copyright@2024 GGA Corp., All rights reserved.

Fragment-Based Drug Design



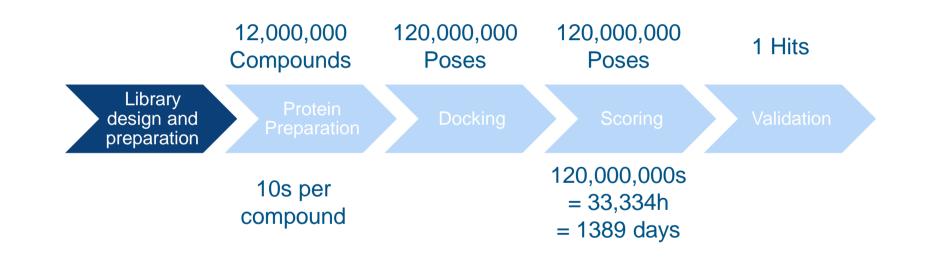
Generate a novel compound from existed scaffold



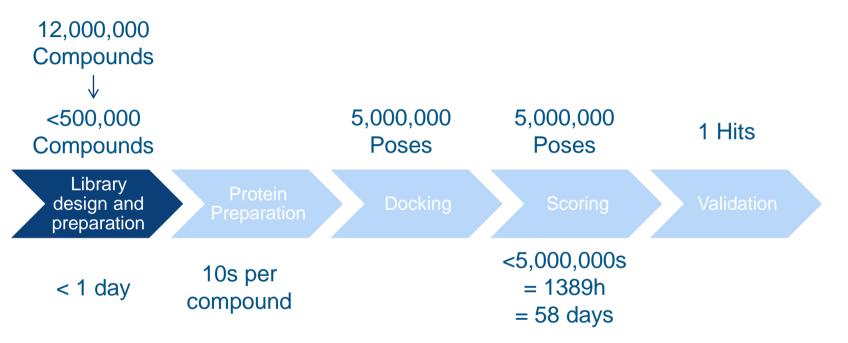
GROW: Reaction-based *in-situ* Ligand Optimization

Fragment-based design of the BRAF inhibitor vemurafenib.

First fragment-based drug (Zelboraf) approved in 2011!



Swen Hoelder, Paul A. Clarke, Paul Workman, 2012

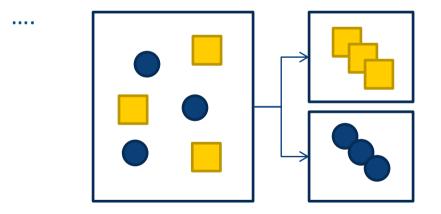

Workflow of Virtual High Throughput Screening

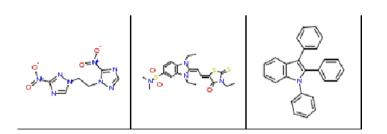
Workflow of Virtual High Throughput Screening

Compound databases

- BIOVIA database
 - <u>Available Chemicals Directory 12,138,856 unique compounds</u>
 - <u>Screening</u> <u>Compounds</u> <u>Directory</u> 10,852,222 unique compounds
 - MDDR 239,064 registered structures with bioactivity data
 - Toxicity 172,542 registered structures
 - <u>Comprehensive</u> <u>Medicinal</u> <u>Chemistry</u> 9603 registered structures
 - Metabolite 71,359 molecules within 119,425 reactions

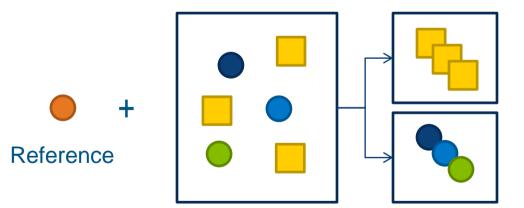
	Index	Name V	/isible	Tagged	Visibility Locke	d MDLNUM	BER CAS_TE		en CLOGP
1	1	Molecule [🗸 Yes	□ No	□ No	MFCD00000	001 645-96-5		2.29
2	2	Molecule [No	□ No	□ No	MFCD00000	002 7188-38-1		
3	3	Molecule [No	□ No	□No	MFCD00000		-9 ACC ABCR	1
4	4	Molecule [No	□No	No	MFCD00000	004 00222 02	ALL	
						Storage Requirements (ACD)			
Total Products		Unique		New Chemicals	Removed Chemicals*	RCG Format		Direct Format	
		Compound	ds Ch					Top: D	irect 8.0,
		(3D Models [†])						Bottom: Direct 9.x	
						Oracle	Unzipped	Oracle	Unzipped
						Tablespace	Dump Files	Tablespace	Dump Files
28,53	39,359	12,030,77	5 6	64,325	707	58.8 GB	38.0 GB	84.8 GB	51.5 GB
-	-	(11,988,41	3)	-				80.2 GB	48.7 GB





Cluster subsets

- Number of molecule cluster
- Diversity of molecule cluster
- Countable property of molecule cluster



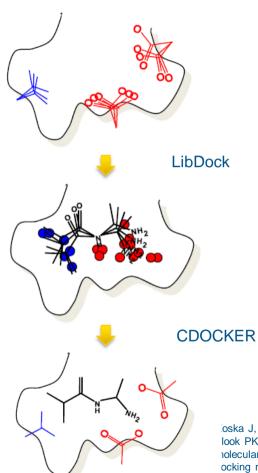
Cluster subsets cont.

- Diversity of molecule cluster
- Countable property of molecule cluster

Tools 🔀	Protocols 🖂	Files 🔀	ņ				
Sketch Molec	ules		2				
Build Fragme	nt		?				
Prepare or Fil	ter Ligands		2				
Search Small Molecule Conformations							
Minimize Ligands							
Align Small Molecules							
Calculate Mol	lecular Properties		?				
Create QSAR	Model		2				
Study SAR			2				
Design and A:	nalyze Libraries		?				
Select Subset (Libraries		2				
Find Diver	se						
Find Diverse	Molecules						
Find Simil	ar						
Find Similar	Molecules by Nun	neric Properties					
Find Similar	Molecules by Fing	erprints					
Find Subse	ets by Pareto						
Optimize Su	bset Library with P	areto Method					
Optimize Co	ombinatorial Librar	y with Pareto Method					
Molecule Bro	Wser		?				

Flexible Docking

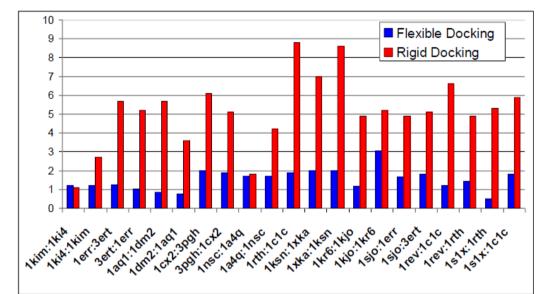
Generate Receptor Side Chain Conformations (ChiFlex algorithm)


Generate Receptor Hotspots for Receptor Conformations

Generate Ligand Conformations (On-the-fly methods, or pre-generated)

Match Conformations to Hotspots

Refine Protein Side Chain Conformations (ChiRotor algorithm)

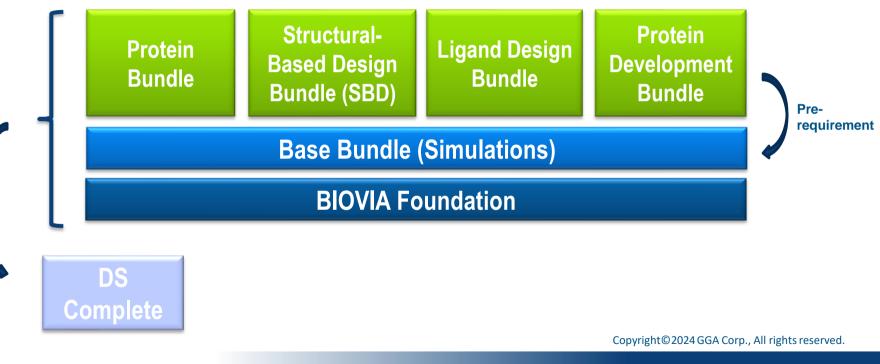

Simulated Annealing and Energy Minimisation of Poses

oska J, Spassov VZ, Maynard AJ, Yan L, Austin N, look PK, Venkatachalam CM. Fully automated nolecular mechanics based induced fit protein-ligand ocking method, *J. Chem. Inf. Model.* **2008**, 48, 1965-973.

Validation of Rational Flexible Docking

Cross-docking: Dock ligands into an alternate conformation of the same receptor

CHARMm-based sampling successfully captures receptor movements induced by a nonnative ligand


RMSD Values compared to X-ray conformation for cross-docking experiments (1kim:1ki4 denotes 1kim ligand docked into 1ki4 receptor)

Copyright©2024 GGA Corp., All rights reserved.

SBIOVIA ざ 訊聯基因數位

Bundle solution

Sustemes | The 3DEXPERIENCE® Company

35 BIOVIA 賞訊聯基因數位

Critical Development Issues

Too many projects to support

- Lots of projects to support
- Multiple applications needed to complete each study
- Time consuming and not automated
- Whole process manually repeated, as new results released

Too many different applications

- Research requires multiple scientific applications
 Each with own data formats and procedures
- Each study is time-consuming and can't be automated

Diverse, complex data to work with

- Variety of disparate complex scientific data needed for each study
- Need to analyse data together
 - Interactive, 3D, charts, tables, etc.

Topic and requirement relations

Торіс	Requirement	Solution	
Protein Engineering	 ・ 蛋白質功能研究 ・ 蛋白質純化 ・ 基因工程預測工具 	Base BundleProtein Bundle	
New Drug Discovery (Small molecule)	 合成化學預測工具 新藥篩選 & 老藥新用 小分子化合物作用機制研究(天 然物、複方作用機制) 	 Base Bundle SBD Bundle Ligand Design Bundle 	
New Drug Discovery (Protein)	 DNA、RNA、Peptide、 Antibody、Protein藥物作用 機制研究 巨分子藥物設計與篩選 	 Base Bundle Protein Bundle Protein Development Bundle Copyright©2024 GGA Corp., All rights reserved. 	

SBIOVIA 💐 訊聯基因數位

For more information please contact...

台北市114內湖區新湖一路36巷28號 中華民國 台灣

Ph: (02) 2795 1777 x 3666 Fax: (02) 2793 8009

msc-support@gga.asia

www.gga.asia